Question
Question: Prove that : \(\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}\)...
Prove that : sin20∘sin40∘sin60∘sin80∘=163
Solution
Hint: Use trigonometry identity 2sinAsinB=cos(A−B)−cos(A+B)
and 2cosAsinB=sin(A+B)+sin(A−B)
Here we have to prove Left hand side(LHS) equal to Right hand side(RHS).
Let’s take a left hand side of the question.
LHS=sin20∘sin40∘sin60∘sin80∘
As we know the value of sin60∘=23
⇒23(sin20∘sin40∘sin80∘)
Now, multiply by 2 in numerator and denominator
⇒43(2sin20∘sin40∘sin80∘) ⇒43((2sin20∘sin40∘)sin80∘)
Use identity 2sinAsinB=cos(A−B)−cos(A+B)
Use identity 2cosAsinB=sin(A+B)+sin(A−B)
⇒83(sin100∘+sin60∘)−83sin80∘ ⇒83sin60∘+83sin100∘−83sin80∘As we know sin(180∘−A)=sin(A)
⇒83sin60∘+83sin(180∘−80∘)−83sin80∘ ⇒83sin60∘+83sin(80∘)−83sin80∘ ⇒83sin60∘ ⇒83×23 ⇒LHS=163So, LHS=163=RHS
Hence proved, sin20∘sin40∘sin60∘sin80∘=163
Note:Whenever we come across these types of problems first substitute the values of known trigonometric angles and collect the rest of trigonometric terms then use the product to sum formulas to convert unknown trigonometric angles to known trigonometric angles .