Solveeit Logo

Question

Question: Prove that : \(\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}\)...

Prove that : sin20sin40sin60sin80=316\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}

Explanation

Solution

Hint: Use trigonometry identity 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)
and 2cosAsinB=sin(A+B)+sin(AB)2\cos A\sin B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)

Here we have to prove Left hand side(LHS) equal to Right hand side(RHS).
Let’s take a left hand side of the question.
LHS=sin20sin40sin60sin80LHS = \sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ
As we know the value of sin60=32\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}
32(sin20sin40sin80)\Rightarrow \dfrac{{\sqrt 3 }}{2}\left( {\sin 20^\circ \sin 40^\circ \sin 80^\circ } \right)
Now, multiply by 2 in numerator and denominator
34(2sin20sin40sin80) 34((2sin20sin40)sin80)  \Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {2\sin 20^\circ \sin 40^\circ \sin 80^\circ } \right) \\\ \Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {2\sin 20^\circ \sin 40^\circ } \right)\sin 80^\circ } \right) \\\
Use identity 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)

34((cos(4020)cos(40+20))sin80) 34((cos(20)cos(60))sin80) cos60=12 34(cos20sin80)38sin80 38(2cos20sin80)38sin80  \Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {\cos \left( {40^\circ - 20^\circ } \right) - \cos \left( {40^\circ + 20^\circ } \right)} \right)\sin 80^\circ } \right) \\\ \Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\left( {\cos \left( {20^\circ } \right) - \cos \left( {60^\circ } \right)} \right)\sin 80^\circ } \right) \\\ \therefore \cos 60^\circ = \dfrac{1}{2} \\\ \Rightarrow \dfrac{{\sqrt 3 }}{4}\left( {\cos 20^\circ \sin 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\\ \Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {2\cos 20^\circ \sin 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\\

Use identity 2cosAsinB=sin(A+B)+sin(AB)2\cos A\sin B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)

38(sin100+sin60)38sin80 38sin60+38sin10038sin80  \Rightarrow \dfrac{{\sqrt 3 }}{8}\left( {\sin 100^\circ + \sin 60^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\\ \Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin 100^\circ - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\\

As we know sin(180A)=sin(A)\sin \left( {180^\circ - A} \right) = \sin \left( A \right)

38sin60+38sin(18080)38sin80 38sin60+38sin(80)38sin80 38sin60 38×32 LHS=316  \Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin \left( {180^\circ - 80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\\ \Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ + \dfrac{{\sqrt 3 }}{8}\sin \left( {80^\circ } \right) - \dfrac{{\sqrt 3 }}{8}\sin 80^\circ \\\ \Rightarrow \dfrac{{\sqrt 3 }}{8}\sin 60^\circ \\\ \Rightarrow \dfrac{{\sqrt 3 }}{8} \times \dfrac{{\sqrt 3 }}{2} \\\ \Rightarrow LHS = \dfrac{3}{{16}} \\\

So, LHS=316=RHSLHS = \dfrac{3}{{16}} = RHS
Hence proved, sin20sin40sin60sin80=316\sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ = \dfrac{3}{{16}}

Note:Whenever we come across these types of problems first substitute the values of known trigonometric angles and collect the rest of trigonometric terms then use the product to sum formulas to convert unknown trigonometric angles to known trigonometric angles .