Solveeit Logo

Question

Question: Prove that \( \sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfra...

Prove that sin20sin40sin60sin80=316\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{3}{16} .

Explanation

Solution

Hint : We first try to break the multiplication into two parts. We find the multiplication of sin40sin80\sin {{40}^{\circ }}\sin {{80}^{\circ }} with the help of 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right) . Then we complete the other multiplication part to get to the solution.

Complete step-by-step answer :
We first try to put the values for sin60\sin {{60}^{\circ }} in sin20sin40sin60sin80\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }} .
We know that sin60=32\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}.
Therefore, sin20sin40sin60sin80=(32sin20)(sin40sin80)\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\left( \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }} \right)\left( \sin {{40}^{\circ }}\sin {{80}^{\circ }} \right)
We have multiplication of three trigonometric ratios. We multiply them separately.
We have the identity theorem where 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right) .
For our given multiplication of (sin40sin80)\left( \sin {{40}^{\circ }}\sin {{80}^{\circ }} \right), we first take 12(2sin40sin80)\dfrac{1}{2}\left( 2\sin {{40}^{\circ }}\sin {{80}^{\circ }} \right).
We take 12(2sin40sin80)=cos(8040)cos(80+40)=cos40cos120\dfrac{1}{2}\left( 2\sin {{40}^{\circ }}\sin {{80}^{\circ }} \right)=\cos \left( {{80}^{\circ }}-{{40}^{\circ }} \right)-\cos \left( {{80}^{\circ }}+{{40}^{\circ }} \right)=\cos {{40}^{\circ }}-\cos {{120}^{\circ }}.
Now we have to find the value of cos120\cos {{120}^{\circ }} .
For general form of cos(x)\cos \left( x \right) , we need to convert the value of x into the closest multiple of π2\dfrac{\pi }{2} and add or subtract a certain value α\alpha from that multiple of π2\dfrac{\pi }{2} to make it equal to x.
Let’s assume x=k×π2+αx=k\times \dfrac{\pi }{2}+\alpha , kZk\in \mathbb{Z} . Here we took addition of α\alpha . We also need to remember that απ2\left| \alpha \right|\le \dfrac{\pi }{2} .
Now we take the value of k. If it’s even then keep the ratio as cos and if it’s odd then the ratio changes to sin ratio from cos.
Then we find the position of the given angle as quadrant value measured in counter clockwise movement from the origin and the positive side of X-axis.
If the angle falls in the first or fourth quadrant then the sign remains positive but if it falls in the second or third quadrant then the sign becomes negative.
The final form becomes cos120=cos(1×π2+30)=sin(30)=12\cos {{120}^{\circ }}=\cos \left( 1\times \dfrac{\pi }{2}+30 \right)=-\sin \left( 30 \right)=-\dfrac{1}{2} .
So, sin20sin40sin60sin80=(34sin20)(cos40+12)\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\left( \dfrac{\sqrt{3}}{4}\sin {{20}^{\circ }} \right)\left( \cos {{40}^{\circ }}+\dfrac{1}{2} \right).
Again, sin20sin40sin60sin80=34(sin20cos40+12sin20)\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{\sqrt{3}}{4}\left( \sin {{20}^{\circ }}\cos {{40}^{\circ }}+\dfrac{1}{2}\sin {{20}^{\circ }} \right).
So, sin20cos40=12(2sin20cos40)=12(sin60sin20)=12(32sin20)\sin {{20}^{\circ }}\cos {{40}^{\circ }}=\dfrac{1}{2}\left( 2\sin {{20}^{\circ }}\cos {{40}^{\circ }} \right)=\dfrac{1}{2}\left( \sin {{60}^{\circ }}-\sin {{20}^{\circ }} \right)=\dfrac{1}{2}\left( \dfrac{\sqrt{3}}{2}-\sin {{20}^{\circ }} \right)
We have

& \sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }} \\\ & =\dfrac{\sqrt{3}}{4}\left( \sin {{20}^{\circ }}\cos {{40}^{\circ }}+\dfrac{1}{2}\sin {{20}^{\circ }} \right) \\\ & =\dfrac{\sqrt{3}}{4}\left( \dfrac{\sqrt{3}}{4}-\dfrac{1}{2}\sin {{20}^{\circ }}+\dfrac{1}{2}\sin {{20}^{\circ }} \right) \\\ & =\dfrac{3}{16} \\\ \end{aligned}$$. Thus proved, $ \sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{3}{16} $ . **Note** : We also used the formula of $ 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) $ for $$\sin {{20}^{\circ }}\cos {{40}^{\circ }}$$. We have to be careful about the choosing of similar trigonometric ratios.