Question
Question: Prove that: \[{{\sin }^{2}}B={{\sin }^{2}}A+{{\sin }^{2}}\left( A-B \right)-2\sin A\cos B\sin \left(...
Prove that: sin2B=sin2A+sin2(A−B)−2sinAcosBsin(A−B).
Solution
Hint: For solving this question, first we take sin (A -B) common from the terms in which sin (A – B) is present and apply the expansion of sin (A – B) in the right-hand side. After this, by applying algebraic and trigonometry formulas, we easily prove left hand side equal to right hand side.
Complete step-by-step answer:
Some of the useful trigonometric formulas used in solving this problem.
sin (A + B) = sin A cos B + cos A sin B
sin (A − B) = sin A cos B − cos A sin B
According to the problem statement, we consider the right-hand side of the equation for proving equivalence of both sides. First, we expand the right-hand side using the above-mentioned formulas.
Considering the right-hand side of the question, we have
⇒sin2A+sin2(A−B)−2sinAcosBsin(A−B)
Taking sin (A – B) common from the terms, we get
⇒sin2A+sin(A−B)[sin(A−B)−2sinAcosB]
Expand the sin (A – B) inside the square bracket, we get
⇒sin2A+sin(A−B)[sinAcosB−cosAsinB−2sinAcosB]⇒sin2A+sin(A−B)[−cosAsinB−sinAcosB]⇒sin2A−sin(A−B)[cosAsinB+sinAcosB]
We know that the cosAsinB+sinAcosB=sin(A+B), using this we simplify our expression as,
⇒sin2A−sin(A−B)sin(A+B)…(1)
Now, expanding sin(A−B)sin(A+B), we get
sin(A−B)sin(A+B)=(sinAcosB−cosAsinB)⋅(sinAcosB+cosAsinB)
By using the algebraic identity (a−b)(a+b)=a2−b2, we have: