Solveeit Logo

Question

Question: Prove that: \({{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}\)...

Prove that: sin242cos278=5+18{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}

Explanation

Solution

Hint: First use the formula sin2Acos2B=cos(A+B)cos(AB){{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right) on the LHS to get sin242cos278=cos(120)cos(36){{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right). Then use the formula cos(θ)=cos(θ)\cos \left( -\theta \right)=\cos \left( \theta \right) to getsin242cos278=cos(120)cos(36){{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right). Then find the value of cos(120)\cos \left( 120{}^\circ \right). Substitute this value and the value of cos(36)\cos \left( 36{}^\circ \right) in the obtained expression. The resultant will be equal to the RHS.

Complete step-by-step answer:
In this question, we need to prove that sin242cos278=5+18{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}.
For this, we will simplify the LHS.
LHS =sin242cos278={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ
We know that if we have two angles A and B, then:
sin2Acos2B=cos(A+B)cos(AB){{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right)
Using this formula on the LHS, we get the following:
LHS =sin242cos278={{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ
sin242cos278=cos(42+78)cos(4278){{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 42{}^\circ +78{}^\circ \right)\cos \left( 42{}^\circ -78{}^\circ \right)
sin242cos278=cos(120)cos(36){{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)
Now, we also know that cos(θ)=cos(θ)\cos \left( -\theta \right)=\cos \left( \theta \right) as cosine is positive in both the I and the IV quadrant.
Using this property on the above equation, we will get the following:
sin242cos278=cos(120)cos(36){{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( -36{}^\circ \right)
sin242cos278=cos(120)cos(36){{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right) …(1)
Now, here we need to calculate cos(120)\cos \left( 120{}^\circ \right)
cos(120)=cos(90+30)\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)
Now, we know the property that cos(90+θ)=sin(θ)\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right)
Using this property in the above equation, we will get the following:
cos(120)=cos(90+30)\cos \left( 120{}^\circ \right)=\cos \left( 90{}^\circ +30{}^\circ \right)
cos(120)=sin(30)\cos \left( 120{}^\circ \right)=-\sin \left( 30{}^\circ \right)
Now, we will substitute this in the equation (1) to get the following:
sin242cos278=cos(120)cos(36){{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =-\cos \left( 120{}^\circ \right)\cos \left( 36{}^\circ \right)
sin242cos278=sin(30)cos(36){{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)
Now, we already know that sin(30)=12sin\left( 30{}^\circ \right)=\dfrac{1}{2} and that cos(36)=5+14\cos \left( 36{}^\circ \right)=\dfrac{\sqrt{5}+1}{4}.
We will now substitute these values in the above equation to get the following:
sin242cos278=sin(30)cos(36){{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\sin \left( 30{}^\circ \right)\cos \left( 36{}^\circ \right)
sin242cos278=12×5+14{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{1}{2}\times \dfrac{\sqrt{5}+1}{4}
sin242cos278=5+18{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}
Hence, the LHS =5+18=\dfrac{\sqrt{5}+1}{8}
Now, we will look at the RHS.
RHS =5+18=\dfrac{\sqrt{5}+1}{8}
Hence, the LHS is equal to the RHS.
So, sin242cos278=5+18{{\sin }^{2}}42{}^\circ -{{\cos }^{2}}78{}^\circ =\dfrac{\sqrt{5}+1}{8}
Hence proved.

Note: In this question, it is important to know about the trigonometric properties like sin2Acos2B=cos(A+B)cos(AB){{\sin }^{2}}A-{{\cos }^{2}}B=-\cos \left( A+B \right)\cos \left( A-B \right), cos(θ)=cos(θ)\cos \left( -\theta \right)=\cos \left( \theta \right), and cos(90+θ)=sin(θ)\cos \left( 90{}^\circ +\theta \right)=-\sin \left( \theta \right). Without knowing these properties, you will be unable to solve this kind of problem as it involves a very unconventional measure of the angles.