Solveeit Logo

Question

Question: Prove that \({{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{...

Prove that sin1(817)+sin1(35)=cos1(3685){{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{85} \right)
sin1(817)+sin1(35)=cos1(3685){{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{85} \right)

Explanation

Solution

We solve this question by first considering the LHS of the given expression and then we use the formula, sin1x+sin1y=sin1(x1y2+y1x2){{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right), if x,y0x,y\ge 0 and x2+y21{{x}^{2}}+{{y}^{2}}\le 1. Then we check if our values satisfy the conditions for the formula and then we get the result of sum in inverse of sine. Then we assume obtained value as θ\theta and find the value of cosθ\cos \theta using the formula for Pythagoras theorem hypotenuse2=base2+perpendicular2\text{hypotenus}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicula}{{\text{r}}^{\text{2}}} and formulas sinθ=PerpendicularHypotenuse\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}} and cosθ=BaseHypotenuse\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}} then find the value of θ\theta in terms of cosine inverse.

Complete step-by-step solution:
Here we need to prove that sin1(817)+sin1(35)=cos1(3685){{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{85} \right).
Now let us consider the expression sin1(817)+sin1(35){{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right).
Now let us consider the formula, sin1x+sin1y=sin1(x1y2+y1x2){{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right), if x,y0x,y\ge 0 and x2+y21{{x}^{2}}+{{y}^{2}}\le 1.
Now let us check if the values we have to satisfy the given conditions for the above formula.
As we see 817,35>0\dfrac{8}{17},\dfrac{3}{5}>0
(817)2+(35)2 64289+925 1600+26017225 42017225<1 \begin{aligned} & \Rightarrow {{\left( \dfrac{8}{17} \right)}^{2}}+{{\left( \dfrac{3}{5} \right)}^{2}} \\\ & \Rightarrow \dfrac{64}{289}+\dfrac{9}{25} \\\ & \Rightarrow \dfrac{1600+2601}{7225} \\\ & \Rightarrow \dfrac{4201}{7225}<1 \\\ \end{aligned}
So, we can use the above formula. Then by applying above formula we get,

& {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{8}{17}\times \sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}+\dfrac{3}{5}\times \sqrt{1-{{\left( \dfrac{8}{17} \right)}^{2}}} \right) \\\ \end{aligned}$$ Squaring those values inside the square root we get, $$\begin{aligned} & ={{\sin }^{-1}}\left( \dfrac{8}{17}\times \sqrt{1-\dfrac{9}{25}}+\dfrac{3}{5}\times \sqrt{1-\dfrac{64}{289}} \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{8}{17}\sqrt{\dfrac{25-9}{25}}+\dfrac{3}{5}\sqrt{\dfrac{289-64}{289}} \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{8}{17}\sqrt{\dfrac{16}{25}}+\dfrac{3}{5}\sqrt{\dfrac{225}{289}} \right) \\\ \end{aligned}$$ Taking the square roots for them and simplifying it we get, $$\begin{aligned} & ={{\sin }^{-1}}\left( \dfrac{8}{17}\times \dfrac{4}{5}+\dfrac{3}{5}\times \dfrac{15}{17} \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{32}{85}+\dfrac{45}{85} \right) \\\ & ={{\sin }^{-1}}\left( \dfrac{77}{85} \right) \\\ \end{aligned}$$ So, we get that, $${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{77}{85} \right)..........\left( 1 \right)$$ Now, let us convert $${{\sin }^{-1}}\left( \dfrac{77}{85} \right)$$ into inverse of cosine as our RHS in the question is in the form of inverse of cosine. So, let us assume that $${{\sin }^{-1}}\left( \dfrac{77}{85} \right)=\theta ..........\left( 2 \right)$$. Then we get, $\sin \theta =\dfrac{77}{85}$. We know that, $\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. On comparing that with $\sin \theta =\dfrac{77}{85}$, we get that 77 is the perpendicular and 85 is the hypotenuse. ![](https://www.vedantu.com/question-sets/a32d086d-1db1-457e-90d1-9fbc1435d9ec3125439773590443645.png) Using Pythagoras theorem given by: $\text{hypotenus}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicula}{{\text{r}}^{\text{2}}}$, we have, $\begin{aligned} & \text{bas}{{\text{e}}^{\text{2}}}=\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}} \\\ & \Rightarrow \text{base}=\sqrt{\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}}} \\\ & \Rightarrow \text{base}=\sqrt{{{85}^{\text{2}}}-{{77}^{\text{2}}}} \\\ & \Rightarrow \text{base}=\sqrt{7225-5929} \\\ & \Rightarrow \text{base}=\sqrt{1296}=36 \\\ \end{aligned}$ Now, we know that, $\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}$. So, we get that $\cos \theta =\dfrac{36}{85}$ Thereby we get, $\theta ={{\cos }^{-1}}\left( \dfrac{36}{85} \right)$. Substituting in equation (2) we get, $${{\sin }^{-1}}\left( \dfrac{77}{85} \right)=\theta ={{\cos }^{-1}}\left( \dfrac{36}{85} \right)$$ Substituting this value in equation (1) we get, $${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{85} \right)$$ Hence Proved. **Note:** There is a possibility of one making a mistake while solving this problem by applying the formula for the sum of inverses of sine functions, ${{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right)$ without checking the conditions for it, $x,y\ge 0$ and ${{x}^{2}}+{{y}^{2}}\le 1$. But we need to check if the values we have satisfy these conditions or not and then apply the formula. If they don’t satisfy then we use the formula, ${{\sin }^{-1}}x+{{\sin }^{-1}}y=\pi -{{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right)$, if $x,y\ge 0$ and ${{x}^{2}}+{{y}^{2}}>1$.