Solveeit Logo

Question

Question: Prove that \[{{\sin }^{-1}}\left( \dfrac{4}{5} \right)+{{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{...

Prove that sin1(45)+sin1(513)+sin1(1665)=π2{{\sin }^{-1}}\left( \dfrac{4}{5} \right)+{{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\sin }^{-1}}\left( \dfrac{16}{65} \right)=\dfrac{\pi }{2}.

Explanation

Solution

Hint: We will begin with the left hand side of the given expression and then we will first apply the formula sin1x+sin1y=sin1(x1y2+y1x2){{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}(x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}) on the first two terms. Also we will use the formula sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 to get sin in terms of cos.

Complete step-by-step answer:
Left hand side of the given expression is sin1(45)+sin1(513)+sin1(1665)........(1){{\sin }^{-1}}\left( \dfrac{4}{5} \right)+{{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\sin }^{-1}}\left( \dfrac{16}{65} \right)........(1)
Now we know the formula that sin1x+sin1y=sin1(x1y2+y1x2){{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}(x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}). So applying this formula to the first two terms in equation (1) we get,
sin1(451(513)2+5131(45)2)+sin1(1665)........(2)\Rightarrow {{\sin }^{-1}}\left( \dfrac{4}{5}\sqrt{1-{{\left( \dfrac{5}{13} \right)}^{2}}}+\dfrac{5}{13}\sqrt{1-{{\left( \dfrac{4}{5} \right)}^{2}}} \right)+{{\sin }^{-1}}\left( \dfrac{16}{65} \right)........(2)
Now squaring the terms in equation (2) we get,
sin1(45125169+51311625)+sin1(1665)........(3)\Rightarrow {{\sin }^{-1}}\left( \dfrac{4}{5}\sqrt{1-\dfrac{25}{169}}+\dfrac{5}{13}\sqrt{1-\dfrac{16}{25}} \right)+{{\sin }^{-1}}\left( \dfrac{16}{65} \right)........(3)
Now taking the LCM and simplifying the terms inside the root in equation (3) we get,

& \Rightarrow {{\sin }^{-1}}\left( \dfrac{4}{5}\sqrt{\dfrac{169-25}{169}}+\dfrac{5}{13}\sqrt{\dfrac{25-16}{25}} \right)+{{\sin }^{-1}}\left( \dfrac{16}{65} \right) \\\ & \Rightarrow {{\sin }^{-1}}\left( \dfrac{4}{5}\sqrt{\dfrac{144}{169}}+\dfrac{5}{13}\sqrt{\dfrac{9}{25}} \right)+{{\sin }^{-1}}\left( \dfrac{16}{65} \right)..........(4) \\\ \end{aligned}$$ Now we can see that the numbers inside the root are perfect squares and hence we can simplify it in equation (4). So we get, $$\Rightarrow {{\sin }^{-1}}\left( \dfrac{4}{5}\times \dfrac{12}{13}+\dfrac{5}{13}\times \dfrac{3}{5} \right)+{{\sin }^{-1}}\left( \dfrac{16}{65} \right)..........(5)$$ Now multiplying and adding the terms in equation (5) we get, $$\Rightarrow {{\sin }^{-1}}\left( \dfrac{48}{65}+\dfrac{15}{65} \right)+{{\sin }^{-1}}\left( \dfrac{16}{65} \right)..........(6)$$ Now as the denominators are same inside the bracket in the first term of equation (6) we can directly add and hence we get, $$\Rightarrow {{\sin }^{-1}}\left( \dfrac{63}{65} \right)+{{\sin }^{-1}}\left( \dfrac{16}{65} \right)..........(7)$$ Now let the first term of equation (7) be equal to $$\theta $$ that is $${{\sin }^{-1}}\left( \dfrac{63}{65} \right)=\theta ......(8)$$. Now rearranging sin in equation (8) we get, $$\Rightarrow \sin \theta =\dfrac{63}{65}......(9)$$ Now squaring both sides of equation (9) we get, $$\Rightarrow {{\sin }^{2}}\theta ={{\left( \dfrac{63}{65} \right)}^{2}}......(10)$$ Also we know that $${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$$. So using this in equation (10) we get, $$\Rightarrow 1-{{\cos }^{2}}\theta ={{\left( \dfrac{63}{65} \right)}^{2}}......(11)$$ Now solving for cos in equation (11) we get, $$\begin{aligned} & \Rightarrow {{\cos }^{2}}\theta =1-{{\left( \dfrac{63}{65} \right)}^{2}} \\\ & \Rightarrow {{\cos }^{2}}\theta =\dfrac{{{65}^{2}}-{{63}^{2}}}{{{65}^{2}}}..........(12) \\\ \end{aligned}$$ Now applying $${{a}^{2}}-{{b}^{2}}=(a-b)(a+b)$$ formula in equation (12) and solving we get, $$\begin{aligned} & \Rightarrow {{\cos }^{2}}\theta =\dfrac{(65+63)(65-63)}{{{65}^{2}}} \\\ & \Rightarrow {{\cos }^{2}}\theta =\dfrac{128\times 2}{{{65}^{2}}} \\\ & \Rightarrow {{\cos }^{2}}\theta =\dfrac{256}{{{65}^{2}}} \\\ & \Rightarrow \cos \theta =\dfrac{16}{65}.........(13) \\\ \end{aligned}$$ Now solving for $$\theta $$ in equation (13) we get, $$\Rightarrow \theta ={{\cos }^{-1}}\dfrac{16}{65}.........(14)$$ Now from equation (8) and equation (14) in equation (7) we get, $$\Rightarrow {{\cos }^{-1}}\left( \dfrac{16}{65} \right)+{{\sin }^{-1}}\left( \dfrac{16}{65} \right).........(15)$$ And we know that $${{\cos }^{-1}}A+{{\sin }^{-1}}A=\dfrac{\pi }{2}$$ and hence applying this in equation (15) we get, $$\Rightarrow {{\cos }^{-1}}\left( \dfrac{16}{65} \right)+{{\sin }^{-1}}\left( \dfrac{16}{65} \right)=\dfrac{\pi }{2}$$ Hence we have proved the left hand side of the given expression equal to the right hand side. Note: Remembering the properties and formulas of inverse trigonometric equations is the key here. We in a hurry can make a mistake in applying the formula in equation (2) so we need to be very careful while doing this step. Also $${{\cos }^{-1}}A+{{\sin }^{-1}}A=\dfrac{\pi }{2}$$ is a very important property.