Solveeit Logo

Question

Question: Prove that \({{\sin }^{-1}}\left( \dfrac{1}{x} \right)={{\csc }^{-1}}x,x\in \left( -\infty ,-1 \righ...

Prove that sin1(1x)=csc1x,x(,1][1,){{\sin }^{-1}}\left( \dfrac{1}{x} \right)={{\csc }^{-1}}x,x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)

Explanation

Solution

Hint: Use the fact that if y=sin1xy={{\sin }^{-1}}x, then x=sinyx=\sin y. Assume y=sin1(1x)y={{\sin }^{-1}}\left( \dfrac{1}{x} \right). Use the previously mentioned fact and write x in terms of y. ]. Take sec1{{\sec }^{-1}} on both sides and use the fact that if y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\\{ 0 \right\\}, then csc1(cscy)=y{{\csc }^{-1}}\left( \csc y \right)=y and hence prove the result.

Complete step-by-step answer:
Before dwelling into the proof of the above question, we must understand how sin1x{{\sin }^{-1}}x is defined even when sinx\sin x is not one-one.
We know that sinx is a periodic function.
Let us draw the graph of sinx

As is evident from the graph sinx is a repeated chunk of the graph of sinx within the interval [A,B]\left[ A,B \right] , and it attains all its possible values in the interval [A,C]\left[ A,C \right]. Here A=π2,B=3π2A=\dfrac{-\pi }{2},B=\dfrac{3\pi }{2} and C=π2C=\dfrac{\pi }{2}
Hence if we consider sinx in the interval [A, C], we will lose no value attained by sinx, and at the same time, sinx will be one-one and onto.
Hence sin1x{{\sin }^{-1}}x is defined over the domain [1,1]\left[ -1,1 \right], with codomain [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right] as in the domain [π2,π2]\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right], sinx is one-one and Rsinx=[1,1]{{R}_{\sin x}}=\left[ -1,1 \right].
Now since sin1x{{\sin }^{-1}}x is the inverse of sinx it satisfies the fact that if y=sin1xy={{\sin }^{-1}}x, then siny=x\sin y=x.
So let y=sin1(1x)y={{\sin }^{-1}}\left( \dfrac{1}{x} \right), y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\\{ 0 \right\\} as 1x0\dfrac{1}{x}\ne 0
Hence we have siny=1x\sin y=\dfrac{1}{x}
Hence we have x=1siny=cscyx=\dfrac{1}{\sin y}=\csc y
Taking csc1{{\csc }^{-1}} on both sides, we get
csc1x=csc1(cscy){{\csc }^{-1}}x={{\csc }^{-1}}\left( \csc y \right)
Now since y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\\{ 0 \right\\} and we know that if y\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\\{ 0 \right\\}, then csc1(cscy)=y{{\csc }^{-1}}\left( \csc y \right)=y [Valid only in principal branch]
Hence we have
csc1x=y y=csc1y \begin{aligned} & {{\csc }^{-1}}x=y \\\ & \Rightarrow y={{\csc }^{-1}}y \\\ \end{aligned}
Reverting to the original variable, we get
sin1(1x)=csc1(x){{\sin }^{-1}}\left( \dfrac{1}{x} \right)={{\csc }^{-1}}\left( x \right)
Since 1x\dfrac{1}{x} is in the domain of sin1x{{\sin }^{-1}}x, we get
1x[1,1]x(,1][1,)\dfrac{1}{x}\in \left[ -1,1 \right]\Rightarrow x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)
Hence we have sin1(1x)=csc1x,x(,1][1,){{\sin }^{-1}}\left( \dfrac{1}{x} \right)={{\csc }^{-1}}x,x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)

Note: [1] The above-specified codomain for sin1x{{\sin }^{-1}}x is called principal branch for sin1x{{\sin }^{-1}}x. We can select any branch as long as sinx\sin x is one-one and onto and Range =[1,1]=\left[ -1,1 \right]. Like instead of [π2,π2]\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right], we can select the interval [π2,3π2]\left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right]. The proof will remain the same as above.