Solveeit Logo

Question

Question: Prove that \(\sec \left( {{\sec }^{-1}}x \right)=x,x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\...

Prove that sec(sec1x)=x,x(,1][1,)\sec \left( {{\sec }^{-1}}x \right)=x,x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)

Explanation

Solution

Hint: Use the fact that if y=sec1xy={{\sec }^{-1}}x, then x=secyx=\sec y. Assume y=sec1y={{\sec }^{-1}}. Write sec(sec1x)\sec \left( {{\sec }^{-1}}x \right) in terms of y and hence prove the above result.

Complete step-by-step answer:
Before dwelling into the proof of the above question, we must understand how sec1x{{\sec }^{-1}}x is defined even when secx\sec x is not one-one.
We know that secx is a periodic function.
Let us draw the graph of secx

As is evident from the graph secx is a repeated chunk of the graph of secx within the interval \left[ A,B \right]-\left\\{ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right\\} , and it attains all its possible values in the interval \left[ A,C \right]-\left\\{ \dfrac{\pi }{2} \right\\}.
Here A=0,B=2πA=0,B=2\pi and C=πC=\pi
Hence if we consider secx in the interval \left[ A,C \right]-\left\\{ \dfrac{\pi }{2} \right\\}, we will lose no value attained by secx, and at the same time, secx will be one-one and onto.
Hence sec1x{{\sec }^{-1}}x is defined over the Domain (,1][1,)\left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right), with codomain \left[ 0,\pi \right]-\left\\{ \dfrac{\pi }{2} \right\\} as in the Domain \left[ 0,\pi \right]-\left\\{ \dfrac{\pi }{2} \right\\}, secx is one-one and Rsecx=(,1][1,){{R}_{\sec x}}=\left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right).
Now since sec1x{{\sec }^{-1}}x is the inverse of secx it satisfies the fact that if y=sec1xy={{\sec }^{-1}}x, then secy=x\sec y=x.
So let y=sec1xy={{\sec }^{-1}}x
Hence we have secy = x.
Now sec(sec1x)=sec(y)\sec \left( {{\sec }^{-1}}x \right)=\sec \left( y \right)
Hence we have sec(sec1x)=x\sec \left( {{\sec }^{-1}}x \right)=x.
Also as x is in the Domain of sec1x{{\sec }^{-1}}x, we have x(,1][1,)x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right).
Hence sec(sec1x)=x,x(,1][1,)\sec \left( {{\sec }^{-1}}x \right)=x,x\in \left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right)

Note: [1] The above-specified codomain for sec1x{{\sec }^{-1}}x is called principal branch for sec1x{{\sec }^{-1}}x. We can select any branch as long as secx\sec x is one-one and onto and Range =(,1][1,)=\left( -\infty ,-1 \right]\bigcup \left[ 1,\infty \right). Like instead of \left[ 0,\pi \right]-\left\\{ \dfrac{\pi }{2} \right\\}, we can select the interval \left[ \pi ,2\pi \right]-\left\\{ \dfrac{3\pi }{2} \right\\}. The proof will remain the same as above.