Solveeit Logo

Question

Question: Prove that \(\sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( \theta -\dfrac{5\pi }{2} \right)...

Prove that sec(3π2θ)sec(θ5π2)+tan(5π2+θ)tan(θ3π2)=1\sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( \theta -\dfrac{5\pi }{2} \right)+\tan \left( \dfrac{5\pi }{2}+\theta \right)\tan \left( \theta -\dfrac{3\pi }{2} \right)=-1 .

Explanation

Solution

Hint: Try to simplify the left-hand side of the equation that we need to prove by using the relation of complementary angles between secant and cosecant function. The formulas that you might need includes sec(90α)=cscα\sec \left( 90{}^\circ -\alpha \right)=\csc\alpha and sec(90+α)=cscα\sec \left( 90{}^\circ +\alpha \right)=-\csc\alpha .

Complete step-by-step answer:
Before moving to the solution, let us discuss the periodicity of the secant and tangent function, which we would be using in the solution. All the trigonometric ratios, including secant and tangent, are periodic functions. We can better understand this using the graph of secant and tangent.
First, let us start with the graph of secx.

Next, let us see the graph of tanx.

Looking at both the graphs, we can say that the graphs are repeating after a fixed period i.e. 2πc2{{\pi }^{c}} . So, we can say that the fundamental period of the secant function and the tangent function is 2πc=3602{{\pi }^{c}}=360{}^\circ
We will now solve the left-hand side of the equation given in the question.
sec(3π2θ)sec(θ5π2)+tan(5π2+θ)tan(θ3π2)\sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( \theta -\dfrac{5\pi }{2} \right)+\tan \left( \dfrac{5\pi }{2}+\theta \right)\tan \left( \theta -\dfrac{3\pi }{2} \right)
=sec(2π(π2+θ))sec(θ2ππ2)+tan(2π+π2+θ)tan(θ2π+π2)=\sec \left( 2\pi -\left( \dfrac{\pi }{2}+\theta \right) \right)\sec \left( \theta -2\pi -\dfrac{\pi }{2} \right)+\tan \left( 2\pi +\dfrac{\pi }{2}+\theta \right)\tan \left( \theta -2\pi +\dfrac{\pi }{2} \right)
Now we know sec(2π±x)=secx\sec \left( 2\pi \pm x \right)=\sec x and tan(2π±x)=±tanx\tan \left( 2\pi \pm x \right)=\pm \tan x . On putting these values in our expression, we get
=sec(π2+θ)sec(θ2ππ2)+tan(π2+θ)tan(θ2π+π2)=\sec \left( \dfrac{\pi }{2}+\theta \right)\sec \left( \theta -2\pi -\dfrac{\pi }{2} \right)+\tan \left( \dfrac{\pi }{2}+\theta \right)\tan \left( \theta -2\pi +\dfrac{\pi }{2} \right)
Now we also know that tan(-x)=-tanx and sec(-x)=secx.
sec(π2+θ)sec(2π(θπ2))tan(π2+θ)tan(2π(θ+π2))\sec \left( \dfrac{\pi }{2}+\theta \right)\sec \left( 2\pi -\left( \theta -\dfrac{\pi }{2} \right) \right)-\tan \left( \dfrac{\pi }{2}+\theta \right)\tan \left( 2\pi -\left( \theta +\dfrac{\pi }{2} \right) \right)
sec(π2+θ)sec(θπ2)+tan(π2+θ)tan(θ+π2)\sec \left( \dfrac{\pi }{2}+\theta \right)\sec \left( \theta -\dfrac{\pi }{2} \right)+\tan \left( \dfrac{\pi }{2}+\theta \right)\tan \left( \theta +\dfrac{\pi }{2} \right)
Now according to the property of complementary angles, we can say:
sec(π2+θ)=cosecθ sec(π2θ)=cosecθ tan(π2+θ)=cotθ tan(π2θ)=cotθ \begin{aligned} & \sec \left( \dfrac{\pi }{2}+\theta \right)=-\cos ec\theta \\\ & sec\left( \dfrac{\pi }{2}-\theta \right)=\cos ec\theta \\\ & \tan \left( \dfrac{\pi }{2}+\theta \right)=-\cot \theta \\\ & \tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta \\\ \end{aligned}
Therefore, our expression becomes:
sec(π2+θ)sec(θπ2)+tan(π2+θ)tan(θ+π2)\sec \left( \dfrac{\pi }{2}+\theta \right)\sec \left( \theta -\dfrac{\pi }{2} \right)+\tan \left( \dfrac{\pi }{2}+\theta \right)\tan \left( \theta +\dfrac{\pi }{2} \right)
sec2θ+tan2θ-{{\sec }^{2}}\theta +{{\tan }^{2}}\theta
Now we know sec2xtan2x=1{{\sec }^{2}}x-{{\tan }^{2}}x=1 .
sec2θ+tan2θ=1-{{\sec }^{2}}\theta +{{\tan }^{2}}\theta =-1

As we have shown that the left-hand side of the equation given in the question is equal to the right-hand side of the equation in the question, which is equal to -1 . Hence, we can say that we have proved that sec(3π2θ)sec(θ5π2)+tan(5π2+θ)tan(θ3π2)=1\sec \left( \dfrac{3\pi }{2}-\theta \right)\sec \left( \theta -\dfrac{5\pi }{2} \right)+\tan \left( \dfrac{5\pi }{2}+\theta \right)\tan \left( \theta -\dfrac{3\pi }{2} \right)=-1 .

Note: Be careful about the calculation and the signs while opening the brackets. The general mistake that a student can make is 1+x-(x-1)=1+x-x-1. Also, you need to remember the properties related to complementary angles and trigonometric ratios.