Solveeit Logo

Question

Question: Prove that \[{\sec ^6}\theta = 1 + {\tan ^{^6}}\theta + 3{\sec ^2}\theta {\tan ^2}\theta \]....

Prove that sec6θ=1+tan6θ+3sec2θtan2θ{\sec ^6}\theta = 1 + {\tan ^{^6}}\theta + 3{\sec ^2}\theta {\tan ^2}\theta .

Explanation

Solution

Hint- Use the algebraic identity (a3b3=(ab)(a2+b2+ab))\left( {{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)} \right) and (sec2θtan2θ)=1\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right) = 1.

According to question Let first rewrite the equation given as below-
sec6θtan6θ3sec2θtan2θ=1{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta = 1
Taking the LHS and rearrange the equation as below
sec6θtan6θ3sec2θtan2θ{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta
(sec2θ)3(tan2θ)33sec2θtan2θ\Rightarrow {\left( {{{\sec }^2}\theta } \right)^3} - {\left( {{{\tan }^2}\theta } \right)^3} - 3{\sec ^2}\theta {\tan ^2}\theta ………. (1)
Now if we clearly look the above equation it is of the form a3b3{a^3} - {b^3} and by algebraic identity we know that a3b3=(ab)(a2+b2+ab){a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)
So rewriting the equation (1) we get
(sec2θtan2θ)(sec4θ+tan4θ+sec2θtan2θ)3sec2θtan2θ\Rightarrow \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\left( {{{\sec }^{^4}}\theta + {{\tan }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta } \right) - 3{\sec ^2}\theta {\tan ^{^2}}\theta
Now by trigonometric identity we know that \left\\{ {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right\\}
1(sec4θ+tan4θ+sec2θtan2θ)3sec2θtan2θ\Rightarrow 1\left( {{{\sec }^{^4}}\theta + {{\tan }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta } \right) - 3{\sec ^2}\theta {\tan ^{^2}}\theta
sec4θ+tan4θ+sec2θtan2θ3sec2θtan2θ\Rightarrow {\sec ^{^4}}\theta + {\tan ^4}\theta + {\sec ^2}\theta {\tan ^2}\theta - 3{\sec ^2}\theta {\tan ^{^2}}\theta
sec4θ+tan4θ2sec2θtan2θ\Rightarrow {\sec ^{^4}}\theta + {\tan ^4}\theta - 2{\sec ^2}\theta {\tan ^{^2}}\theta
Or, above can be written as
(sec2θtan2θ)2(tan2θsec2θ)2\Rightarrow {\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right)^2}{\left( {{{\tan }^{^2}}\theta - {{\sec }^2}\theta } \right)^2}
Again, by trigonometric identity we know that \left\\{ {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right\\}

(1)2 or (1)2 1  \Rightarrow {\left( 1 \right)^2}{\text{ or }}{\left( { - 1} \right)^2} \\\ \Rightarrow 1 \\\

Therefore LHS sec6θtan6θ3sec2θtan2θ=1{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta = 1 or we can saysec6θ=1+tan6θ+3sec2θtan2θ{\sec ^6}\theta = 1 + {\tan ^{^6}}\theta + 3{\sec ^2}\theta {\tan ^2}\theta
Hence Proved.

Note- Whenever this type of question appears always bring the RHS terms to LHS and then solve LHS. Afterwards rearrange the equation such that it makes an algebraic identity [ as in our question we converted the equation sec6θtan6θ3sec2θtan2θ{\sec ^6}\theta - {\tan ^{^6}}\theta - 3{\sec ^2}\theta {\tan ^2}\theta to the form a3b3{a^3} - {b^3}].Remember the trigonometric identity (sec2θtan2θ)=1\left( {{{\sec }^2}\theta - {{\tan }^{^2}}\theta } \right) = 1.