Solveeit Logo

Question

Question: Prove that \[{{r}_{1}}{{r}_{2}}{{r}_{3}}=r{{s}^{2}}\], where \[{{r}_{1}},{{r}_{2}}\]and \[{{r}_{3}}\...

Prove that r1r2r3=rs2{{r}_{1}}{{r}_{2}}{{r}_{3}}=r{{s}^{2}}, where r1,r2{{r}_{1}},{{r}_{2}}and r3{{r}_{3}}is the radius of the exterior circle on side A, B and C.

Explanation

Solution

Hint: Use heron’s formula to solve. Multiply the radius of these circles considered to prove it. Find the radius of r1,r2{{r}_{1}},{{r}_{2}}and r3{{r}_{3}}. Prove the LHS by multiplying r1,r2{{r}_{1}},{{r}_{2}}and r3{{r}_{3}}..

Complete step-by-step answer:
Let us consider that r1,r2{{r}_{1}},{{r}_{2}}and r3{{r}_{3}}are radius of the circle, opposite to a, b and c of the triangle ABC.
Let the triangle be the area of the triangle ABC.
S is the sum of the length of the triangle ABC.
s=a+b+c2\therefore s=\dfrac{a+b+c}{2}
Radius of the triangle, r=areasumoppositesider=\dfrac{area}{sum-opposite side}
\therefore radius of r1=Δsa{{r}_{1}}=\dfrac{\Delta }{s-a}
Similarly, r2=Δsb{{r}_{2}}=\dfrac{\Delta }{s-b}and r3=Δsc{{r}_{3}}=\dfrac{\Delta }{s-c}
r1r2r3=(Δsa)(Δsb)(Δsc){{r}_{1}}{{r}_{2}}{{r}_{3}}=\left( \dfrac{\Delta }{s-a} \right)\left( \dfrac{\Delta }{s-b} \right)\left( \dfrac{\Delta }{s-c} \right)
Where radius r1{{r}_{1}}is opposite to the side ‘a’ of ABC\vartriangle ABC
radius r2{{r}_{2}}is opposite to the side ‘b’ of ABC\vartriangle ABC
radius r3{{r}_{3}}is opposite to the side ‘c’ of ABC\vartriangle ABC
r1r2r3=Δ3(sa)(sb)(sc)(1)\therefore {{r}_{1}}{{r}_{2}}{{r}_{3}}=\dfrac{{{\Delta }^{3}}}{\left( s-a \right)\left( s-b \right)\left( s-c \right)}-(1)
By using, Heron’s formula, we can take the area of the triangle, when the length of all three sides of triangle are known:
Δ=s(sa)(sb)(sc)(2)\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}-(2)
The figure shows the geometrical significance of (sa),(sb)\left( s-a \right),\left( s-b \right)and (sc)\left( s-c \right).

In equation (1) multiply the numerator & denominator by ‘s’.
r1r2r3=Δ3×ss×(sa)(sb)(sc)(3){{r}_{1}}{{r}_{2}}{{r}_{3}}=\dfrac{{{\Delta }^{3}}\times s}{s\times \left( s-a \right)\left( s-b \right)\left( s-c \right)}-(3)
We know, Δ=s(sa)(sb)(sc)\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}
Squaring equation (2) on both sides
Δ2=s(sa)(sb)(sc)(4){{\Delta }^{2}}=s\left( s-a \right)\left( s-b \right)\left( s-c \right)-(4)
Substitute the value of (4) in (3)
=sΔ3Δ2=sΔ(5)=\dfrac{s{{\Delta }^{3}}}{{{\Delta }^{2}}}=s\Delta -(5)
Multiply numerator and denominator by ‘s’ in equation (5)
=s2Δs={{s}^{2}}\dfrac{\Delta }{s}
We know the radius in circle, r = a / (sum of lengths of triangle) = as\dfrac{a}{s}
By substituting the same, we get
r1r2r3=rs2{{r}_{1}}{{r}_{2}}{{r}_{3}}=r{{s}^{2}}.
Note: Remember to use heron’s formula to simplify equation (1).