Solveeit Logo

Question

Question: Prove that \(\operatorname{cosec} \theta \sqrt {1 - {{\cos }^2}\theta } = 1\)...

Prove that cosecθ1cos2θ=1\operatorname{cosec} \theta \sqrt {1 - {{\cos }^2}\theta } = 1

Explanation

Solution

In this question, we will proceed by considering the L.H.S part of the given equation. Then use the formula in trigonometric identities and trigonometric ratios to prove that the L.H.S part of the given equation is equal to the R.H.S part.

Complete step-by-step answer:
Given equation is cosecθ1cos2θ=1\operatorname{cosec} \theta \sqrt {1 - {{\cos }^2}\theta } = 1
Consider the L.H.S part of the equation
We know that 1cos2θ=sin2θ1 - {\cos ^2}\theta = {\sin ^2}\theta . By using this formula, we have
L.H.S=cosecθsin2θ L.H.S=cosecθ(sinθ)  \Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \operatorname{cosec} \theta \sqrt {{{\sin }^2}\theta } \\\ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \operatorname{cosec} \theta \left( {\sin \theta } \right) \\\
We know that cosecθ=1sinθ\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}. By using this formula, we have
L.H.S=cosecθsin2θ L.H.S=1sinθ(sinθ)=sinθsinθ L.H.S=1 L.H.S=R.H.S  \Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \operatorname{cosec} \theta \sqrt {{{\sin }^2}\theta } \\\ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = \dfrac{1}{{\sin \theta }}\left( {\sin \theta } \right) = \dfrac{{\sin \theta }}{{\sin \theta }} \\\ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}} = 1 \\\ \therefore {\text{L}}{\text{.H}}{\text{.S}} = {\text{R}}{\text{.H}}{\text{.S}} \\\
Hence, proved that cosecθ1cos2θ=1\operatorname{cosec} \theta \sqrt {1 - {{\cos }^2}\theta } = 1.

Note: Here we have used the trigonometry identity sin2θ+cos2θ=11cos2θ=sin2θ{\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow 1 - {\cos ^2}\theta = {\sin ^2}\theta and the trigonometric ratio cosecθ=1sinθ\operatorname{cosec} \theta = \dfrac{1}{{\sin \theta }}. So, in solving these types of questions, remember all the formula n trigonometry to solve easily.