Solveeit Logo

Question

Question: Prove that \[{}^nPr = {}^{n - 1}Pr + r.{\text{ }}{}^{\left( {n - 1} \right)}Pr - 1\]....

Prove that nPr=n1Pr+r. (n1)Pr1{}^nPr = {}^{n - 1}Pr + r.{\text{ }}{}^{\left( {n - 1} \right)}Pr - 1.

Explanation

Solution

Here we will first consider the RHS and then prove it equal to LHS by using the following formula and simple arithmetic operations:
nPr=n!(nr)!{}^nPr = \dfrac{{n!}}{{\left( {n - r} \right)!}}

Complete step-by-step answer:
Let us consider the right hand side:
RHS=n1Pr+r. (n1)Pr1RHS = {}^{n - 1}Pr + r.{\text{ }}{}^{\left( {n - 1} \right)}Pr - 1
Now applying the following formula separately for each term we get:-
The formula is:
nPr=n!(nr)!{}^nPr = \dfrac{{n!}}{{\left( {n - r} \right)!}}
Applying this formula we get:-
RHS=(n1)!(n1r)!+r.(n1)!(n1(r1))!RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - \left( {r - 1} \right)} \right)!}}
Now solving it further we get:-

RHS=(n1)!(n1r)!+r.(n1)!(n1r+1)! RHS=(n1)!(n1r)!+r.(n1)!(nr)!  RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r + 1} \right)!}} \\\ RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - r} \right)!}} \\\

As we know that:
(nr)!=(nr)(n1r)!\left( {n - r} \right)! = \left( {n - r} \right)\left( {n - 1 - r} \right)!
Hence substituting the value we get:-
RHS=(n1)!(n1r)!+r.(n1)!(nr)(nr1)!RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} + r.\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - r} \right)\left( {n - r - 1} \right)!}}
Now taking (n1)!(n1r)!\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}} common we get:-
RHS=(n1)!(n1r)![1+r.1nr]RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {1 + r.\dfrac{1}{{n - r}}} \right]
Now taking the LCM and solving it further we get:-

RHS=(n1)!(n1r)![1(nr)+r(1)nr] RHS=(n1)!(n1r)![nr+rnr] RHS=(n1)!(n1r)![nnr]  RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {\dfrac{{1\left( {n - r} \right) + r\left( 1 \right)}}{{n - r}}} \right] \\\ RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {\dfrac{{n - r + r}}{{n - r}}} \right] \\\ RHS = \dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 1 - r} \right)!}}\left[ {\dfrac{n}{{n - r}}} \right] \\\

Now we know that:-

n!=n(n1)! (nr)!=(nr)(n1r)!  n! = n\left( {n - 1} \right)! \\\ \left( {n - r} \right)! = \left( {n - r} \right)\left( {n - 1 - r} \right)! \\\

Hence substituting the values we get:-
RHS=n!(nr)!RHS = \dfrac{{n!}}{{\left( {n - r} \right)!}}
Also, we know that:
nPr=n!(nr)!{}^nPr = \dfrac{{n!}}{{\left( {n - r} \right)!}}
Therefore,

RHS=nPr  = LHS  RHS = {}^nPr \\\ {\text{ = }}LHS \\\

Therefore,
RHS = LHSRHS{\text{ = }}LHS
Hence proved.

Note: Students should proceed from Right hand side in such questions as it is much easier to compress two or more terms into a single term rather than expanding a single term into two or more terms.
The formula of permutation should be used with correct values of n and r.