Solveeit Logo

Question

Question: Prove that \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\) ( \(x\) being measured in ra...

Prove that limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1 ( xx being measured in radians).

Explanation

Solution

Sandwich theorem is useful in proving the limits given in the question.
Theorem: Sandwich Theorem:
Let f,gf,g and hh be real functions such that g(x)f(x)h(x)g\left( x \right) \leqslant f\left( x \right) \leqslant h\left( x \right) for all xx in the common domain of definition.
For some limit aa, if limxag(x)=l=limxah(x)\mathop {\lim }\limits_{x \to a} g\left( x \right) = l = \mathop {\lim }\limits_{x \to a} h\left( x \right), then limxaf(x)=l\mathop {\lim }\limits_{x \to a} f\left( x \right) = l. This can be illustrated as the following:

Try to prove the inequality relating to trigonometric functions. cosx<sinxx<1\cos x < \dfrac{{\sin x}}{x} < 1, and the given limit can be easily proved by the sandwich theorem.

Complete step by step answer:
Step 1: Prove the inequality cosx<sinxx<1\cos x < \dfrac{{\sin x}}{x} < 1
Consider figure 1.

In figure 1, O is the center of the unit circle such that the angle AOC\angle AOC is xx radians and 0<x<π20 < x < \dfrac{\pi }{2}.
Line segment BA and CD are perpendicular to OA.
Further, join AC. Then
Area of AOC\vartriangle AOC < area of sector OACOAC < area of AOB\vartriangle AOB
The area of a triangle is half of the product of base and height.
Area of a sector of a circle = θ2π(πr2)\dfrac{\theta }{{2\pi }}\left( {\pi {r^2}} \right), where θ\theta is the angle of the sector.
12OA.CD<x2ππ(OA)2<12OA.AB\Rightarrow \dfrac{1}{2}OA.CD < \dfrac{x}{{2\pi }}\pi {\left( {OA} \right)^2} < \dfrac{1}{2}OA.AB
CD<x(OA)<AB\Rightarrow CD < x\left( {OA} \right) < AB …… (1)
In OCD\vartriangle OCD
sinx=perpendicularhypotenuse\sin x = \dfrac{{{\text{perpendicular}}}}{{{\text{hypotenuse}}}}
Therefore, sinx=CDOC\sin x = \dfrac{{CD}}{{OC}}
The line segments OC and OA are the radius of the circle with center O in figure 1.
Thus, OC = OA
Therefore, sinx=CDOA\sin x = \dfrac{{CD}}{{OA}}
Hence, CD=OAsinxCD = OA\sin x
In AOB\vartriangle AOB
tanx=perpendicularbase\tan x = \dfrac{{{\text{perpendicular}}}}{{{\text{base}}}}
Therefore, tanx=ABOA\tan x = \dfrac{{AB}}{{OA}}
Hence, AB=OAtanxAB = OA\tan x
Put the values of CD and AB in the inequality (1)
OAsinx<x(OA)<OAtanx\Rightarrow OA\sin x < x\left( {OA} \right) < OA\tan x
We know tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
sinx<x<sinxcosx\Rightarrow \sin x < x < \dfrac{{\sin x}}{{\cos x}}
Dividing throughout by sinx\sin x, we get:
1<xsinx<1cosx\Rightarrow 1 < \dfrac{x}{{\sin x}} < \dfrac{1}{{\cos x}}
Take reciprocals throughout, we have:
cosx<sinxx<1\Rightarrow \cos x < \dfrac{{\sin x}}{x} < 1

Step 2: Use sandwich theorem to prove the given limit
We know that limxacos(f(x))=coslimxa(f(x))\mathop {\lim }\limits_{x \to a} \cos \left( {f\left( x \right)} \right) = \cos \mathop {\lim }\limits_{x \to a} \left( {f\left( x \right)} \right)
Thus, the limx0cosx=coslimx0(x)\mathop {\lim }\limits_{x \to 0} \cos x = \cos \mathop {\lim }\limits_{x \to 0} \left( x \right)
Therefore, cos0=1\cos 0 = 1
Hence, limx0cosx=1\mathop {\lim }\limits_{x \to 0} \cos x = 1
And limx11=1\mathop {\lim }\limits_{x \to 1} 1 = 1
We have, limx0cosx=1=limx01\mathop {\lim }\limits_{x \to 0} \cos x = 1 = \mathop {\lim }\limits_{x \to 0} 1
Then limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1 by the sandwich theorem.

The limit limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1 has been proved.

Note:
Use the above limit limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1 for future questions. For example:
Evaluate: limx0sin4xsin2x\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 4x}}{{\sin 2x}}
Multiplying and dividing by 4x4x and make the angles in the sine function and dividing angle the same.
limx0[sin4x4x×2xsin2x×2]\Rightarrow \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{\sin 4x}}{{4x}} \times \dfrac{{2x}}{{\sin 2x}} \times 2} \right]

limx0sin4x4x×limx0[1sin2x2x]×limx02 limx0sin4x4x×[limx01limx0sin2x2x]×limx02 1×11×2 2  \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 4x}}{{4x}} \times \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{1}{{\dfrac{{\sin 2x}}{{2x}}}}} \right] \times \mathop {\lim }\limits_{x \to 0} 2 \\\ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 4x}}{{4x}} \times \left[ {\dfrac{{\mathop {\lim }\limits_{x \to 0} 1}}{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 2x}}{{2x}}}}} \right] \times \mathop {\lim }\limits_{x \to 0} 2 \\\ \Rightarrow 1 \times \dfrac{1}{1} \times 2 \\\ \Rightarrow 2 \\\