Solveeit Logo

Question

Question: Prove that \[({\log _a}n)({\log _b}n) + ({\log _b}n)({\log _c}n) + ({\log _c}n)({\log _a}n) = \dfrac...

Prove that (logan)(logbn)+(logbn)(logcn)+(logcn)(logan)=logna+lognb+lognclognabc({\log _a}n)({\log _b}n) + ({\log _b}n)({\log _c}n) + ({\log _c}n)({\log _a}n) = \dfrac{{{{\log }_n}a + {{\log }_n}b + {{\log }_n}c}}{{{{\log }_n}abc}}

Explanation

Solution

Use logarithmic formulas to prove.
First we have to take left hand side and try to prove the right hand side
Second, in that sum we are going to use the property for changing the base of logarithms on the left hand side, continue with that, sometimes we have to use the product of two logarithms.
Finally we get the right hand side.

Complete step-by-step answer:
It is given that (logan)(logbn)+(logbn)(logcn)+(logcn)(logan)({\log _a}n)({\log _b}n) + ({\log _b}n)({\log _c}n) + ({\log _c}n)({\log _a}n)=logna+lognb+lognclognabc\dfrac{{{{\log }_n}a + {{\log }_n}b + {{\log }_n}c}}{{{{\log }_n}abc}}
We have to prove the left hand side is equal to the right hand side.
First we take the Left hand side,
(logan)(logbn)+(logbn)(logcn)+(logcn)(logan)...(1)\Rightarrow ({\log _a}n)({\log _b}n) + ({\log _b}n)({\log _c}n) + ({\log _c}n)({\log _a}n)...\left( 1 \right)
Let us take (logan),(logbn),(logcn)({\log _a}n),({\log _b}n),({\log _c}n) in equation (1)\left( 1 \right)
We use the property for changing the base of logarithms, that is
(logan)=1logna({\log _a}n) = \dfrac{1}{{{{\log }_n}a}}
(logbn)=1lognb({\log _b}n) = \dfrac{1}{{{{\log }_n}b}}
(logcn)=1lognc({\log _c}n) = \dfrac{1}{{{{\log }_n}c}}
Substitute these values in(1)\left( 1 \right), then it become
1logna1lognb+1lognb1lognc+1lognc1logna\dfrac{1}{{{{\log }_n}a}}\dfrac{1}{{{{\log }_n}b}} + \dfrac{1}{{{{\log }_n}b}}\dfrac{1}{{{{\log }_n}c}} + \dfrac{1}{{{{\log }_n}c}}\dfrac{1}{{{{\log }_n}a}}
Multiply the terms
1logna×lognb+1lognb×lognc+1lognc×logna...(2)\dfrac{1}{{{{\log }_n}a \times {{\log }_n}b}} + \dfrac{1}{{{{\log }_n}b \times {{\log }_n}c}} + \dfrac{1}{{{{\log }_n}c \times {{\log }_n}a}}...\left( 2 \right)
Here we apply product rule for logarithmic,
logea×logeb=logeab{\log _e}a \times {\log _e}b = {\log _e}ab
Here ee is equal to nn
So we can write it as,
logna×lognb=lognab{\log _n}a \times {\log _n}b = {\log _n}ab
lognb×lognc=lognbc{\log _n}b \times {\log _n}c = {\log _n}bc
lognc×logna=lognca{\log _n}c \times {\log _n}a = {\log _n}ca
Putting the above values in (2)\left( 2 \right) and we get,
1lognab+1lognbc+1lognca\Rightarrow \dfrac{1}{{{{\log }_n}ab}} + \dfrac{1}{{{{\log }_n}bc}} + \dfrac{1}{{{{\log }_n}ca}}
On multiply and divide by lognc{\log _n}c in 1lognab\dfrac{1}{{{{\log }_n}ab}}, logna{\log _n}a in 1lognbc\dfrac{1}{{{{\log }_n}bc}} and lognb{\log _n}b in 1lognca\dfrac{1}{{{{\log }_n}ca}}
We can write it as,
lognclognab×lognc+lognalogna×lognbc+lognblognca×lognb...(3)\dfrac{{{{\log }_n}c}}{{{{\log }_n}ab \times {{\log }_n}c}} + \dfrac{{{{\log }_n}a}}{{{{\log }_n}a \times {{\log }_n}bc}} + \dfrac{{{{\log }_n}b}}{{{{\log }_n}ca \times {{\log }_n}b}}...\left( 3 \right)
Again, we use product rule for logarithmic
logea×logeb=logeab{\log _e}a \times {\log _e}b = {\log _e}ab
Here ee is equal tonn
lognab×lognc=lognabc{\log _n}ab \times {\log _n}c = {\log _n}abc
logna×lognbc=lognabc{\log _n}a \times {\log _n}bc = {\log _n}abc
lognca×lognb=lognabc{\log _n}ca \times {\log _n}b = {\log _n}abc
So we can write that equation (3)\left( 3 \right)
lognclognabc+lognalognabc+lognblognabc\Rightarrow \dfrac{{{{\log }_n}c}}{{{{\log }_n}abc}} + \dfrac{{{{\log }_n}a}}{{{{\log }_n}abc}} + \dfrac{{{{\log }_n}b}}{{{{\log }_n}abc}}
Here the denominator is same so we can write,
lognc+logna+lognblognabc\Rightarrow \dfrac{{{{\log }_n}c + {{\log }_n}a + {{\log }_n}b}}{{{{\log }_n}abc}}
We can write it correct in order,
logna+lognb+lognclognabc....(4)\Rightarrow \dfrac{{{{\log }_n}a + {{\log }_n}b + {{\log }_n}c}}{{{{\log }_n}abc}}....\left( 4 \right)
Hence left hand side is equal to right hand side (1)=(4)(1) = (4)
\therefore (logan)(logbn)+(logbn)(logcn)+(logcn)(logan)({\log _a}n)({\log _b}n) + ({\log _b}n)({\log _c}n) + ({\log _c}n)({\log _a}n) =logna+lognb+lognclognabc\dfrac{{{{\log }_n}a + {{\log }_n}b + {{\log }_n}c}}{{{{\log }_n}abc}}
Hence we proved.

Note: Here, we start with the basic property of logarithm by continuing this process, just by simplifying, we get the answer.
So, for this type of question to occur, first take the left hand side and then try to prove the right hand side.
By practicing the number of times, we get an idea for how to solve the equation.
A general form for product rule for logarithmic:
The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of individuals’ logarithms.
logb(mn)=logb(m)+logb(n){\log _b}\left( {mn} \right) = {\log _b}\left( m \right) + {\log _b}\left( n \right) for b>0b > 0