Question
Question: Prove that \({{\left( \tan \theta +\dfrac{1}{\cos \theta } \right)}^{2}}+{{\left( \tan \theta -\dfra...
Prove that (tanθ+cosθ1)2+(tanθ−cosθ1)2=2(1−sin2θ1+sin2θ).
Solution
Hint: Expand the L.H.S term and simplify it and Use Trigonometric ratios and identities to get the required answer.
“Complete step-by-step answer:”
To prove, (tanθ+cosθ1)2+(tanθ−cosθ1)2=2(1−sin2θ1+sin2θ)
Left hand side (L.H.S) =(tanθ+cosθ1)2+(tanθ−cosθ1)2
We open the brackets by the formula (a+b)2=a2+b2+2ab.
∴LHS=(tan2θ+cos2θ1+2tanθcosθ)+(tan2θ+cos2θ1−2tanθcosθ)⇒LHS=2tan2θ+cos2θ2⇒LHS=2(tan2θ+cos2θ1)
Let us write tanθ as cosθsinθ.
⇒LHS=2[(cosθsinθ)2+cos2θ1]⇒LHS=2(cos2θsin2θ+cos2θ1)⇒LHS=2(cos2θ1+sin2θ)
We know that 1−sin2θ=cos2θ.
∴LHS=2(1−sin2θ1+sin2θ)L.H.S=R.H.S
Hence proved.
Note: In questions like these, our aim is to correct the longer side, in this case L.H.S identical to the other side. Therefore, after every step, we try to manipulate the expression.
Formulae used:
(a+b)2=a2+2ab+b2cos2θ+sin2θ=1tan2θ=cos2θsin2θ