Solveeit Logo

Question

Question: Prove that \({{\left( \tan \theta +\dfrac{1}{\cos \theta } \right)}^{2}}+{{\left( \tan \theta -\dfra...

Prove that (tanθ+1cosθ)2+(tanθ1cosθ)2=2(1+sin2θ1sin2θ){{\left( \tan \theta +\dfrac{1}{\cos \theta } \right)}^{2}}+{{\left( \tan \theta -\dfrac{1}{\cos \theta } \right)}^{2}}=2\left( \dfrac{1+{{\sin }^{2}}\theta }{1-{{\sin }^{2}}\theta } \right).

Explanation

Solution

Hint: Expand the L.H.S term and simplify it and Use Trigonometric ratios and identities to get the required answer.

“Complete step-by-step answer:”
To prove, (tanθ+1cosθ)2+(tanθ1cosθ)2=2(1+sin2θ1sin2θ){{\left( \tan \theta +\dfrac{1}{\cos \theta } \right)}^{2}}+{{\left( \tan \theta -\dfrac{1}{\cos \theta } \right)}^{2}}=2\left( \dfrac{1+{{\sin }^{2}}\theta }{1-{{\sin }^{2}}\theta } \right)
Left hand side (L.H.S) =(tanθ+1cosθ)2+(tanθ1cosθ)2={{\left( \tan \theta +\dfrac{1}{\cos \theta } \right)}^{2}}+{{\left( \tan \theta -\dfrac{1}{\cos \theta } \right)}^{2}}
We open the brackets by the formula (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab.
LHS=(tan2θ+1cos2θ+2tanθcosθ)+(tan2θ+1cos2θ2tanθcosθ) LHS=2tan2θ+2cos2θ LHS=2(tan2θ+1cos2θ) \begin{aligned} & \therefore LHS=\left( {{\tan }^{2}}\theta +\dfrac{1}{{{\cos }^{2}}\theta }+2\tan \theta \cos \theta \right)+\left( {{\tan }^{2}}\theta +\dfrac{1}{{{\cos }^{2}}\theta }-2\tan \theta \cos \theta \right) \\\ & \Rightarrow LHS=2{{\tan }^{2}}\theta +\dfrac{2}{{{\cos }^{2}}\theta } \\\ & \Rightarrow LHS=2\left( {{\tan }^{2}}\theta +\dfrac{1}{{{\cos }^{2}}\theta } \right) \\\ \end{aligned}
Let us write tanθ as sinθcosθ\tan \theta \ as\ \dfrac{\sin \theta }{\cos \theta }.
LHS=2[(sinθcosθ)2+1cos2θ] LHS=2(sin2θcos2θ+1cos2θ) LHS=2(1+sin2θcos2θ) \begin{aligned} & \Rightarrow LHS=2\left[ {{\left( \dfrac{\sin \theta }{\cos \theta } \right)}^{2}}+\dfrac{1}{{{\cos }^{2}}\theta } \right] \\\ & \Rightarrow LHS=2\left( \dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta } \right) \\\ & \Rightarrow LHS=2\left( \dfrac{1+{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right) \\\ \end{aligned}
We know that 1sin2θ=cos2θ1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta .
LHS=2(1+sin2θ1sin2θ) L.H.S=R.H.S \begin{aligned} & \therefore LHS=2\left( \dfrac{1+{{\sin }^{2}}\theta }{1-{{\sin }^{2}}\theta } \right) \\\ & L.H.S=R.H.S \\\ \end{aligned}
Hence proved.

Note: In questions like these, our aim is to correct the longer side, in this case L.H.S identical to the other side. Therefore, after every step, we try to manipulate the expression.
Formulae used:
(a+b)2=a2+2ab+b2 cos2θ+sin2θ=1 tan2θ=sin2θcos2θ \begin{aligned} & {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} \\\ & {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\\ & {{\tan }^{2}}\theta =\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \\\ \end{aligned}