Solveeit Logo

Question

Question: Prove that \(\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\si...

Prove that 1sinθ1+sinθ+1+sinθ1sinθ=2cosθ, where π2<θ<π\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|=\dfrac{-2}{\cos \theta },\text{ where }\dfrac{\pi }{2}<\theta <\pi

Explanation

Solution

Hint: Simply the expression 1sinθ1+sinθ\dfrac{1-\sin \theta }{1+\sin \theta } by multiplying the numerator and denominator by 1sinθ1-\sin \theta and using the identities (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} and 1sin2θ=cos2θ1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta . Similarly, simplify the expression 1+sinθ1sinθ\dfrac{1+\sin \theta }{1-\sin \theta } by multiplying the numerator and the denominator by 1+sinθ1+\sin \theta and using the identities (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} and 1sin2θ=cos2θ1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta . Hence find the simplified expressions for 1sinθ1+sinθ\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }} and 1+sinθ1sinθ\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}. Hence evaluate the expression 1sinθ1+sinθ+1+sinθ1sinθ\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right| and hence prove L.H.S = R.H.S.

Complete step-by-step answer:
Simplifying the expression 1sinθ1+sinθ\dfrac{1-\sin \theta }{1+\sin \theta }:
Multiplying the numerator and denominator by 1sinθ1-\sin \theta , we get
1sinθ1+sinθ=1sinθ1+sinθ×1sinθ1sinθ=(1sinθ)2(1sinθ)(1+sinθ)\dfrac{1-\sin \theta }{1+\sin \theta }=\dfrac{1-\sin \theta }{1+\sin \theta }\times \dfrac{1-\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{\left( 1-\sin \theta \right)\left( 1+\sin \theta \right)}
We know that (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}
Using the above algebraic identity, we get
1sinθ1+sinθ=(1sinθ)21sin2θ\dfrac{1-\sin \theta }{1+\sin \theta }=\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{1-{{\sin }^{2}}\theta }
We know that 1sin2θ=cos2θ1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta
Hence, we have 1sinθ1+sinθ=(1sinθ)2cos2θ\dfrac{1-\sin \theta }{1+\sin \theta }=\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }
Simplifying the expression 1+sinθ1sinθ\dfrac{1+\sin \theta }{1-\sin \theta }:
Multiplying the numerator and denominator by 1+sinθ1+\sin \theta , we get
1+sinθ1sinθ=1+sinθ1sinθ×1+sinθ1sinθ=(1+sinθ)2(1sinθ)(1+sinθ)\dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{1+\sin \theta }{1-\sin \theta }\times \dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{\left( 1-\sin \theta \right)\left( 1+\sin \theta \right)}
We know that (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}
Using the above algebraic identity, we get
1+sinθ1sinθ=(1+sinθ)21sin2θ\dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{1-{{\sin }^{2}}\theta }
We know that 1sin2θ=cos2θ1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta
Hence, we have 1+sinθ1sinθ=(1+sinθ)2cos2θ\dfrac{1+\sin \theta }{1-\sin \theta }=\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }
Hence, we have
1sinθ1+sinθ=(1sinθ)2cos2θ\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}=\sqrt{\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}
We know that x2=x\sqrt{{{x}^{2}}}=\left| x \right|
Hence, we have
1sinθ1+sinθ=1sinθcosθ\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}=\left| \dfrac{1-\sin \theta }{\cos \theta } \right|
Similarly, we have 1+sinθ1sinθ=(1+sinθ)2cos2θ=1+sinθcosθ\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}=\sqrt{\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}=\left| \dfrac{1+\sin \theta }{\cos \theta } \right|
We know that 1sinθ1-1\le \sin \theta \le 1
Hence, we have 1+sinθ0,1sinθ01+\sin \theta \ge 0,1-\sin \theta \ge 0
Also, since π2<θ<π,\dfrac{\pi }{2}<\theta <\pi , we have cosθ<0\cos \theta <0
Hence, we have cosθ=cosθ,1+sinθ=1+sinθ,1sinθ=1sinθ\left| \cos \theta \right|=-\cos \theta ,\left| 1+\sin \theta \right|=1+\sin \theta ,\left| 1-\sin \theta \right|=1-\sin \theta
Hence, we have
1sinθ1+sinθ+1+sinθ1sinθ=1sinθcosθ+1+sinθcosθ\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|=\left| \left| \dfrac{1-\sin \theta }{\cos \theta } \right|+\left| \dfrac{1+\sin \theta }{\cos \theta } \right| \right|
Since cosθ=cosθ,1+sinθ=1+sinθ,1sinθ=1sinθ\left| \cos \theta \right|=-\cos \theta ,\left| 1+\sin \theta \right|=1+\sin \theta ,\left| 1-\sin \theta \right|=1-\sin \theta we have
1sinθ1+sinθ+1+sinθ1sinθ=1sinθcosθ1+sinθcosθ=2cosθ\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|=\left| -\dfrac{1-\sin \theta }{\cos \theta }-\dfrac{1+\sin \theta }{\cos \theta } \right|=\left| \dfrac{2}{\cos \theta } \right|
Since cosθ=cosθ,\left| \cos \theta \right|=-\cos \theta , we have
1sinθ1+sinθ+1+sinθ1sinθ=2cosθ\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }} \right|=\dfrac{-2}{\cos \theta }

Note: [1] Many students make a mistake by writing cos2x=cosx\sqrt{{{\cos }^{2}}x}=\cos x. This is incorrect as the square root (L.H.S) is a positive quantity, whereas cosx (R.H.S) can be positive as well as a negative quantity. In general, we have x2=x\sqrt{{{x}^{2}}}=\left| x \right| and not x2=x\sqrt{{{x}^{2}}}=x