Question
Question: Prove that \(\left| \sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1+\sin \theta }{1-\si...
Prove that 1+sinθ1−sinθ+1−sinθ1+sinθ=cosθ−2, where 2π<θ<π
Solution
Hint: Simply the expression 1+sinθ1−sinθ by multiplying the numerator and denominator by 1−sinθ and using the identities (a+b)(a−b)=a2−b2 and 1−sin2θ=cos2θ. Similarly, simplify the expression 1−sinθ1+sinθ by multiplying the numerator and the denominator by 1+sinθ and using the identities (a+b)(a−b)=a2−b2 and 1−sin2θ=cos2θ. Hence find the simplified expressions for 1+sinθ1−sinθ and 1−sinθ1+sinθ. Hence evaluate the expression 1+sinθ1−sinθ+1−sinθ1+sinθ and hence prove L.H.S = R.H.S.
Complete step-by-step answer:
Simplifying the expression 1+sinθ1−sinθ:
Multiplying the numerator and denominator by 1−sinθ, we get
1+sinθ1−sinθ=1+sinθ1−sinθ×1−sinθ1−sinθ=(1−sinθ)(1+sinθ)(1−sinθ)2
We know that (a−b)(a+b)=a2−b2
Using the above algebraic identity, we get
1+sinθ1−sinθ=1−sin2θ(1−sinθ)2
We know that 1−sin2θ=cos2θ
Hence, we have 1+sinθ1−sinθ=cos2θ(1−sinθ)2
Simplifying the expression 1−sinθ1+sinθ:
Multiplying the numerator and denominator by 1+sinθ, we get
1−sinθ1+sinθ=1−sinθ1+sinθ×1−sinθ1+sinθ=(1−sinθ)(1+sinθ)(1+sinθ)2
We know that (a−b)(a+b)=a2−b2
Using the above algebraic identity, we get
1−sinθ1+sinθ=1−sin2θ(1+sinθ)2
We know that 1−sin2θ=cos2θ
Hence, we have 1−sinθ1+sinθ=cos2θ(1+sinθ)2
Hence, we have
1+sinθ1−sinθ=cos2θ(1−sinθ)2
We know that x2=∣x∣
Hence, we have
1+sinθ1−sinθ=cosθ1−sinθ
Similarly, we have 1−sinθ1+sinθ=cos2θ(1+sinθ)2=cosθ1+sinθ
We know that −1≤sinθ≤1
Hence, we have 1+sinθ≥0,1−sinθ≥0
Also, since 2π<θ<π, we have cosθ<0
Hence, we have ∣cosθ∣=−cosθ,∣1+sinθ∣=1+sinθ,∣1−sinθ∣=1−sinθ
Hence, we have
1+sinθ1−sinθ+1−sinθ1+sinθ=cosθ1−sinθ+cosθ1+sinθ
Since ∣cosθ∣=−cosθ,∣1+sinθ∣=1+sinθ,∣1−sinθ∣=1−sinθ we have
1+sinθ1−sinθ+1−sinθ1+sinθ=−cosθ1−sinθ−cosθ1+sinθ=cosθ2
Since ∣cosθ∣=−cosθ, we have
1+sinθ1−sinθ+1−sinθ1+sinθ=cosθ−2
Note: [1] Many students make a mistake by writing cos2x=cosx. This is incorrect as the square root (L.H.S) is a positive quantity, whereas cosx (R.H.S) can be positive as well as a negative quantity. In general, we have x2=∣x∣ and not x2=x