Solveeit Logo

Question

Question: Prove that: \[\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0\]...

Prove that:
(sin3x+sinx)sinx+(cos3xcosx)cosx=0\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0

Explanation

Solution

We will start the problem by multiplying the terms and trying to simplify them. Then we arrange them to get our conventional form of cos(A  B) = cosA cosB + sinA sinBcos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB and cos2A=cos2Asin2A\cos 2A = {\cos ^2}A - {\sin ^2}A, as A=3xA = 3x and B=xB = x, we will apply the formula and simplify to get our desired result.

Complete step by step Answer:

To prove: (sin3x+sinx)sinx+(cos3xcosx)cosx=0\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0
Now, our left hand side is,
(sin3x+sinx)sinx+(cos3xcosx)cosx\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx
By multiplying we get,
=sin3xsinx+sin2x+cos3xcosxcos2x= \sin 3x\sin x + {\sin ^2}x + \cos 3x\cos x - {\cos ^2}x
On Arranging we get,
=(cos3xcosx+sin3xsinx)(cos2xsin2x)= (\cos 3x\cos x + \sin 3x\sin x) - ({\cos ^2}x - {\sin ^2}x)
Now using, cos(A  B) = cosA cosB + sinA sinBcos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinBand cos2A=cos2Asin2A\cos 2A = {\cos ^2}A - {\sin ^2}A, we get,
=cos(3xx)cos2x= \cos (3x - x) - \cos 2x
On simplification we get,
=cos2xcos2x= \cos 2x - \cos 2x
=0= 0
==R.H.S
Hence, (sin3x+sinx)sinx+(cos3xcosx)cosx=0\left( {sin3x + sinx} \right)sinx + \left( {cos3x - cosx} \right)cosx = 0

Note: In this given problem we are dealing with trigonometric quantities. The formulas we are using here are, cos(A  B) = cosA cosB + sinA sinBcos\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}cosA{\text{ }}cosB{\text{ }} + {\text{ }}sinA{\text{ }}sinB and cos2A=cos2Asin2A\cos 2A = {\cos ^2}A - {\sin ^2}A. First always open the brackets to simplify the given expression and then look for what pattern is it following and accordingly apply trigonometric formulas, to get the desired result.
Some other necessary trigonometric formulas are:

cos(A+B)=cosAcosBsinAsinB cos(AB)=cosAcosB+sinAsinB sin(A+B)=sinAcosB+cosAsinB sin(AB)=sinAcosBcosAsinB \cos (A + B) = \cos A\cos B - \sin A\sin B \\\ \cos (A - B) = \cos A\cos B + \sin A\sin B \\\ \sin (A + B) = \sin A\cos B + \cos A\sin B \\\ \sin (A - B) = \sin A\cos B - \cos A\sin B \\\