Solveeit Logo

Question

Question: Prove that \(\left( \sin \alpha +\cos \alpha \right)\left( \tan \alpha +\cot \alpha \right)=\sec \al...

Prove that (sinα+cosα)(tanα+cotα)=secα+cscα\left( \sin \alpha +\cos \alpha \right)\left( \tan \alpha +\cot \alpha \right)=\sec \alpha +\csc \alpha .

Explanation

Solution

We have a sum of two terms on the left-hand side of (tanα+cotα)\left( \tan \alpha +\cot \alpha \right). We simplify tanα=sinαcosα\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha } and cotα=cosαsinα\cot \alpha =\dfrac{\cos \alpha }{\sin \alpha } on both numerator and denominator. Then we add them as the LCM of the denominators are the multiplication of them. Then we use the identity of (sin2α+cos2α)=1\left( {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \right)=1 to find the solution of the numerator. We also need to mention the conditions.

Complete step-by-step solution:
We simplify the addition part of (tanα+cotα)\left( \tan \alpha +\cot \alpha \right) by breaking it as tanα=sinαcosα\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha } and cotα=cosαsinα\cot \alpha =\dfrac{\cos \alpha }{\sin \alpha }. We replace the values as and get
(tanα+cotα) =sinαcosα+cosαsinα =sin2α+cos2αsinαcosα \begin{aligned} & \left( \tan \alpha +\cot \alpha \right) \\\ & =\dfrac{\sin \alpha }{\cos \alpha }+\dfrac{\cos \alpha }{\sin \alpha } \\\ & =\dfrac{{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha }{\sin \alpha \cos \alpha } \\\ \end{aligned}
We replace the value with (sin2α+cos2α)=1\left( {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \right)=1.
Therefore, (tanα+cotα)=sin2α+cos2αsinαcosα=1sinαcosα\left( \tan \alpha +\cot \alpha \right)=\dfrac{{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha }{\sin \alpha \cos \alpha }=\dfrac{1}{\sin \alpha \cos \alpha }
We multiply 1sinαcosα\dfrac{1}{\sin \alpha \cos \alpha } with (sinα+cosα)\left( \sin \alpha +\cos \alpha \right).
So, (sinα+cosα)×1sinαcosα=sinα+cosαsinαcosα\left( \sin \alpha +\cos \alpha \right)\times \dfrac{1}{\sin \alpha \cos \alpha }=\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }.
We break the individual terms and get sinα+cosαsinαcosα=sinαsinαcosα+cosαsinαcosα\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }=\dfrac{\sin \alpha }{\sin \alpha \cos \alpha }+\dfrac{\cos \alpha }{\sin \alpha \cos \alpha }.
Bu eliminating common terms we get sinα+cosαsinαcosα=1cosα+1sinα\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }=\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }
We know that the relations for inverse are 1cosα=secα,1sinα=cscα\dfrac{1}{\cos \alpha }=\sec \alpha ,\dfrac{1}{\sin \alpha }=\csc \alpha
The equation becomes sinα+cosαsinαcosα=1cosα+1sinα=secα+cscα\dfrac{\sin \alpha +\cos \alpha }{\sin \alpha \cos \alpha }=\dfrac{1}{\cos \alpha }+\dfrac{1}{\sin \alpha }=\sec \alpha +\csc \alpha .
Thus proved (sinα+cosα)(tanα+cotα)=secα+cscα\left( \sin \alpha +\cos \alpha \right)\left( \tan \alpha +\cot \alpha \right)=\sec \alpha +\csc \alpha .

Note: It is important to remember the condition to eliminate the cosα,sinα\cos \alpha ,\sin \alpha from both denominator and numerator. No domain is given for the variable xx. The value of tanx0\tan x\ne 0 is essential. The simplified condition will be xnπ,nZx\ne n\pi ,n\in \mathbb{Z}.