Solveeit Logo

Question

Question: Prove that – \[\left( {\dfrac{{1 + {{\tan }^2}A}}{{1 + {{\cot }^2}A}}} \right) = {\left( {\dfrac{{...

Prove that –
(1+tan2A1+cot2A)=(1tanA1cotA)2=tan2A\left( {\dfrac{{1 + {{\tan }^2}A}}{{1 + {{\cot }^2}A}}} \right) = {\left( {\dfrac{{1 - \tan A}}{{1 - \cot A}}} \right)^2} = {\tan ^2}A

Explanation

Solution

Hint: Convert the first and the second part of the question individually to the third part . Convert cotθ\cot \theta to tanθ\tan \theta and then cancel out the equal terms from the numerator and the denominator .

Complete step-by-step answer:
First proving (1+tan2A1+cot2A)=tan2A\left( {\dfrac{{1 + {{\tan }^2}A}}{{1 + {{\cot }^2}A}}} \right) = {\tan ^2}A
1+tan2A1+1tan2A\Rightarrow \dfrac{{1 + {{\tan }^2}A}}{{1 + \dfrac{1}{{{{\tan }^2}A}}}} = tan2A{\tan ^2}A ( since cotθ=1tanθ\cot \theta = \dfrac{1}{{\tan \theta }} )
1+tan2Atan2A+1tan2A=tan2A\Rightarrow \dfrac{{1 + {{\tan }^2}A}}{{\dfrac{{{{\tan }^2}A + 1}}{{{{\tan }^2}A}}}} = {\tan ^2}A
\Rightarrow tan2A=tan2A{\tan ^2}A = {\tan ^2}A ( cancelling out the common terms )
LHS = RHS
Now proving (1tanA1cotA)2=tan2A{\left( {\dfrac{{1 - \tan A}}{{1 - \cot A}}} \right)^2} = {\tan ^2}A
(1tanA11tanA)2=tan2A\Rightarrow {\left( {\dfrac{{1 - \tan A}}{{1 - \dfrac{1}{{\tan A}}}}} \right)^2} = {\tan ^2}A ( since cotθ=1tanθ\cot \theta = \dfrac{1}{{\tan \theta }} )
(1tanAtanA1tanA)2=tan2A\Rightarrow {\left( {\dfrac{{1 - \tan A}}{{\dfrac{{\tan A - 1}}{{\tan A}}}}} \right)^2} = {\tan ^2}A
\Rightarrow (tanA)2=tan2A{\left( {\tan A} \right)^2} = {\tan ^2}A ( cancelling out the common terms )
tan2A=tan2A\Rightarrow {\tan ^2}A = {\tan ^2}A ( Since (tanA)2=tan2A{\left( {\tan A} \right)^2} = {\tan ^2}A )
LHS = RHS
Note : In these questions it is advised to simplify the LHS or the RHS according to their complexity of trigonometric functions . Sometimes proving LHS = RHS needs simplification on both sides of the equation . Remember to convert related trigonometric functions to get to the final result.