Solveeit Logo

Question

Question: Prove that: \[{{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta...

Prove that:
(cscθcotθ)2=1cosθ1+cosθ{{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }

Explanation

Solution

Hint: Take the LHS of the expression. Substitute basic trigonometric formulas and convert the expression in terms of sinθ\sin \theta and cosθ\cos \theta . Thus simplify it using basic formulas of sine and cosine function.
Complete step-by-step answer:
We have been given the expression, (cscθcotθ)2{{\left( \csc \theta -\cot \theta \right)}^{2}}, which we need to prove is equal to (1cosθ1+cosθ)\left( \dfrac{1-\cos \theta }{1+\cos \theta } \right).
We know the basic trigonometric formulas,
cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } and cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }
Now let us substitute these basic trigonometric formulas in the expression, (cscθcotθ)2{{\left( \csc \theta -\cot \theta \right)}^{2}}.
(cscθcotθ)2=(1sinθcosθsinθ)2{{\left( \csc \theta -\cot \theta \right)}^{2}}={{\left( \dfrac{1}{\sin \theta }-\dfrac{\cos \theta }{\sin \theta } \right)}^{2}}
=(1cosθsinθ)2=(1cosθ)2(sinθ)2 =(1cosθ)2sin2θ \begin{aligned} & ={{\left( \dfrac{1-\cos \theta }{\sin \theta } \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{{{\left( \sin \theta \right)}^{2}}} \\\ & =\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{{{\sin }^{2}}\theta } \\\ \end{aligned}
We know that, cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1.
Thus we can write that, sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta .
Now let us put the value of sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta in the above expression.
(cscθcotθ)2=(1cosθ)21cos2θ\therefore {{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{1-{{\cos }^{2}}\theta }
We know the formula, (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.
Similarly, 1cos2θ=12cos2θ1-{{\cos }^{2}}\theta ={{1}^{2}}-{{\cos }^{2}}\theta
=(1cosθ)(1+cosθ)=\left( 1-\cos \theta \right)\left( 1+\cos \theta \right)
(cscθcotθ)2=(1cosθ)212cos2θ\therefore {{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{{{\left( 1-\cos \theta \right)}^{2}}}{{{1}^{2}}-{{\cos }^{2}}\theta }
=(1cosθ)(1cosθ)(1cosθ)(1+cosθ)=\dfrac{\left( 1-\cos \theta \right)\left( 1-\cos \theta \right)}{\left( 1-\cos \theta \right)\left( 1+\cos \theta \right)}
Cancel out (1cosθ)\left( 1-\cos \theta \right) from the numerator and the denominator.
(cscθcotθ)2=1cosθ1+cosθ{{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }
Thus we proved that, (cscθcotθ)2=1cosθ1+cosθ{{\left( \csc \theta -\cot \theta \right)}^{2}}=\dfrac{1-\cos \theta }{1+\cos \theta }.
Hence proved

Note: To solve this question or the similar type of questions we need to know the basic trigonometric properties and formulas of the functions which are used. If we know these formulas it is easy to solve. Trigonometry is an important portion in mathematics, so learn the basic formulas.