Solveeit Logo

Question

Question: Prove that \(\left( \csc \phi -\sin \phi \right)\left( \sec \phi -\cos \phi \right)=\dfrac{1}{\tan \...

Prove that (cscϕsinϕ)(secϕcosϕ)=1tanϕ+cotϕ\left( \csc \phi -\sin \phi \right)\left( \sec \phi -\cos \phi \right)=\dfrac{1}{\tan \phi +\cot \phi }.

Explanation

Solution

We first take the left-hand part of the equation of (cscϕsinϕ)(secϕcosϕ)\left( \csc \phi -\sin \phi \right)\left( \sec \phi -\cos \phi \right). Then we simplify the expressions separately. We convert the denominator using the relation secx=1cosx\sec x=\dfrac{1}{\cos x}, cscx=1sinx\csc x=\dfrac{1}{\sin x}. Then we use the theorem cos2x+sin2x=1{{\cos }^{2}}x+{{\sin }^{2}}x=1. We simplify both denominator and numerator. After elimination we get the right-hand side of the equation.

Complete step by step answer:
We try to simplify the trigonometric equation (cscϕsinϕ)\left( \csc \phi -\sin \phi \right).
We get cscϕsinϕ\csc \phi -\sin \phi . We know that cscx=1sinx\csc x=\dfrac{1}{\sin x}. We also have 1sin2x=cos2x1-{{\sin }^{2}}x={{\cos }^{2}}x.
Therefore, cscϕsinϕ=1sinϕsinϕ=1sin2ϕsinϕ=cos2ϕsinϕ\csc \phi -\sin \phi =\dfrac{1}{\sin \phi }-\sin \phi =\dfrac{1-{{\sin }^{2}}\phi }{\sin \phi }=\dfrac{{{\cos }^{2}}\phi }{\sin \phi }.
We have to prove the trigonometric equation secϕcosϕ\sec \phi -\cos \phi .
We know that secϕ=1cosϕ\sec \phi =\dfrac{1}{\cos \phi }. We also have 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x.
Therefore, secϕcosϕ=1cosϕcosϕ=1cos2ϕcosϕ=sin2ϕcosϕ\sec \phi -\cos \phi =\dfrac{1}{\cos \phi }-\cos \phi =\dfrac{1-{{\cos }^{2}}\phi }{\cos \phi }=\dfrac{{{\sin }^{2}}\phi }{\cos \phi }.

The multiplication gives
(cscϕsinϕ)(secϕcosϕ)=cos2ϕsinϕ×sin2ϕcosϕ (cscϕsinϕ)(secϕcosϕ)=sinϕcosϕ \left( \csc \phi -\sin \phi \right)\left( \sec \phi -\cos \phi \right) =\dfrac{{{\cos }^{2}}\phi }{\sin \phi }\times \dfrac{{{\sin }^{2}}\phi }{\cos \phi } \\\ \Rightarrow \left( \csc \phi -\sin \phi \right)\left( \sec \phi -\cos \phi \right)=\sin \phi \cos \phi \\\
We write the simplification as sinϕcosϕ=sinϕcosϕ1=sinϕcosϕsin2ϕ+cos2ϕ\sin \phi \cos \phi =\dfrac{\sin \phi \cos \phi }{1}=\dfrac{\sin \phi \cos \phi }{{{\sin }^{2}}\phi +{{\cos }^{2}}\phi }.
Now we rearrange the expression as
sinϕcosϕsin2ϕ+cos2ϕ=1sin2ϕ+cos2ϕsinϕcosϕ\dfrac{\sin \phi \cos \phi }{{{\sin }^{2}}\phi +{{\cos }^{2}}\phi }=\dfrac{1}{\dfrac{{{\sin }^{2}}\phi +{{\cos }^{2}}\phi }{\sin \phi \cos \phi }}
Completing the division, awe get

\therefore \dfrac{1}{\dfrac{{{\sin }^{2}}\phi +{{\cos }^{2}}\phi }{\sin \phi \cos \phi }}=\dfrac{1}{\tan \phi +\cot \phi }$$ **Thus proved $\left( \csc \phi -\sin \phi \right)\left( \sec \phi -\cos \phi \right)=\dfrac{1}{\tan \phi +\cot \phi }$.** **Note:** It is important to remember that the condition to eliminate the $\sin x$ from both denominator and numerator is $\sin x\ne 0$. No domain is given for the variable $x$. The simplified condition will be $x\ne n\pi ,n\in \mathbb{Z}$. The identities ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ and $\sec x=\dfrac{1}{\cos x}$ are valid for any value of $x$. The division of the fraction part only gives $\sin x$ as the solution.