Question
Question: Prove that\[\left| {\begin{array}{*{20}{c}} {1 + a}&1&1 \\\ 1&{1 + b}&1 \\\ 1&1&{1 + c...
Prove that\left| {\begin{array}{*{20}{c}} {1 + a}&1&1 \\\ 1&{1 + b}&1 \\\ 1&1&{1 + c} \end{array}} \right| = ab + bc + ca + abc.
Explanation
Solution
We prove the question using the formula for determinant of order 3×3 \left| {\begin{array}{*{20}{c}}
a&b;&c; \\\
d&e;&f; \\\
g&h;&i;
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&f; \\\
h&i;
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f; \\\
g&i;
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e; \\\
g&h;
\end{array}} \right|.
Then use the following formula to calculate the determinant of order 2×2.