Solveeit Logo

Question

Question: Prove that: \(\left( a \right)\dfrac{cos\left( \pi +\theta \right)cos\left( -\theta \right)}{sin\l...

Prove that:
(a)cos(π+θ)cos(θ)sin(πθ)cos(π2+θ)=cot2θ\left( a \right)\dfrac{cos\left( \pi +\theta \right)cos\left( -\theta \right)}{sin\left( \pi -\theta \right)cos\left( \dfrac{\pi }{2}+\theta \right)}=co{{t}^{2}}\theta
(b)cos(θ)+sin  (270+θ)sin  (270θ)+cos  (180+θ)=0\left( b \right)\cos \left( \theta \right)+\text{sin}\ \ \left( {{270}^{{}^\circ }}+\theta \right)-\text{sin}\ \ \left( {{270}^{{}^\circ }}-\theta \right)+\text{cos}\ \ \left( {{180}^{{}^\circ }}+\theta \right)=0
(c)cos(3π2+θ)cos(2π+θ)[cot(3π2θ)+cot(2π+θ)]=1\left( c \right)cos\left( \dfrac{3\pi }{2}+\theta \right)cos\left( 2\pi +\theta \right)\left[ cot\left( \dfrac{3\pi }{2}-\theta \right)+cot\left( 2\pi +\theta \right) \right]=1

Explanation

Solution

We are given two expressions involving trigonometric terms in each part and we need to prove that one is equal to the other. For this we use several trigonometric formulae and we try to simplify the equation as much as possible. We will start with the left side and we then perform some operations on it to turn it into the expression written on the right hand side.

Complete step-by-step solution:
Consider
(a)cos(π+θ)cos(θ)sin(πθ)cos(π2+θ)=cot2θ\left( a \right)\dfrac{cos\left( \pi +\theta \right)cos\left( -\theta \right)}{sin\left( \pi -\theta \right)cos\left( \dfrac{\pi }{2}+\theta \right)}=co{{t}^{2}}\theta
We start with the left hand side, we have
LHS=cos(π+θ)cos(θ)sin(πθ)cos(π2+θ)LHS=\dfrac{cos\left( \pi +\theta \right)cos\left( -\theta \right)}{sin\left( \pi -\theta \right)cos\left( \dfrac{\pi }{2}+\theta \right)}
We see that inside the angle of cosine we have π+θ\pi+\theta and π2+θ\dfrac{\pi}{2}+\theta type terms, so we use the following formulae:
cos(π+θ)=cos(θ)cos(\pi +\theta )=-\cos (\theta )
cos(θ)=cos(θ)cos(-\theta )=\cos (\theta )
sin(πθ)=sin(θ)\sin (\pi -\theta )=\sin (\theta )
cos(π2+θ)=sin(θ)cos\left( \dfrac{\pi }{2}+\theta \right)=-\sin (\theta )
Putting these in LHS, we get
cos(θ)cos(θ)sin(θ)(sin(θ))=cos2θsin2θ=(cosθsinθ)2\dfrac{-\cos \left( \theta \right)cos\left( \theta \right)}{sin\left( \theta \right)\left( -\sin \left( \theta \right) \right)}=\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }={{\left( \dfrac{\cos \theta }{\sin \theta } \right)}^{2}}
Now, we use the following formula:
cot(A)=cos(A)sin(A)cot(A)=\dfrac{cos(A)}{sin(A)}
We get:
(cosθsinθ)2=cot2θ=RHS{{\left( \dfrac{\cos \theta }{\sin \theta } \right)}^{2}}={{\cot }^{2}}\theta =RHS
Hence, proved.
Consider
(b)cos(θ)+sin  (270+θ)sin  (270θ)+cos  (180+θ)=0\left( b \right)\cos \left( \theta \right)+\text{sin}\ \ \left( {{270}^{{}^\circ }}+\theta \right)-\text{sin}\ \ \left( {{270}^{{}^\circ }}-\theta \right)+\text{cos}\ \ \left( {{180}^{{}^\circ }}+\theta \right)=0
We start with the left hand side, we have
LHS=cos(θ)+sin  (270+θ)sin  (270θ)+cos  (180+θ)LHS=\cos \left( \theta \right)+\text{sin}\ \ \left( {{270}^{{}^\circ }}+\theta \right)-\text{sin}\ \ \left( {{270}^{{}^\circ }}-\theta \right)+\text{cos}\ \ \left( {{180}^{{}^\circ }}+\theta \right)
We know that
270=3π2{{270}^{{}^\circ }}=\dfrac{3\pi }{2}
180=π{{180}^{{}^\circ }}=\pi
So, we get:
cos(θ)+sin  (3π2+θ)sin  (3π2θ)+cos  (π+θ)\cos \left( \theta \right)+\text{sin}\ \ \left( \dfrac{3\pi }{2}+\theta \right)-\text{sin}\ \ \left( \dfrac{3\pi }{2}-\theta \right)+\text{cos}\ \ \left( \pi +\theta \right)
We use the formulae below:
sin  (3π2+θ)=cos(θ)\text{sin}\ \ \left( \dfrac{3\pi }{2}+\theta \right)=-\cos \left( \theta \right)
sin  (3π2θ)=cos(θ)\text{sin}\ \ \left( \dfrac{3\pi }{2}-\theta \right)=-\cos \left( \theta \right)
cos  (π+θ)=cos(θ)\text{cos}\ \ \left( \pi +\theta \right)=-\cos \left( \theta \right)
Putting the values in the expression, we get:
cos(θ)cos(θ)(cos(θ))cos(θ)=cos(θ)cos(θ)+cos(θ)cos(θ)=0=RHS\cos \left( \theta \right)-\cos \left( \theta \right)-\left( -\cos \left( \theta \right) \right)-\cos \left( \theta \right)=\cos \left( \theta \right)-\cos \left( \theta \right)+\cos \left( \theta \right)-\cos \left( \theta \right)=0=RHS
Hence, proved.
Consider
(c)cos(3π2+θ)cos(2π+θ)[cot(3π2θ)+cot(2π+θ)]=1\left( c \right)cos\left( \dfrac{3\pi }{2}+\theta \right)cos\left( 2\pi +\theta \right)\left[ cot\left( \dfrac{3\pi }{2}-\theta \right)+cot\left( 2\pi +\theta \right) \right]=1
Again, we use the formulae used in the previous questions. We will use these:
cos(3π2+θ)=sin(θ)\cos \left( \dfrac{3\pi }{2}+\theta \right)=\sin \left( \theta \right)
cos(2π+θ)=cos(θ)\text{cos}\left( 2\pi +\theta \right)=\cos \left( \theta \right)
cot(3π2θ)=tan(θ)\cot \left( \dfrac{3\pi }{2}-\theta \right)=\tan \left( \theta \right)
cot(2π+θ)=cot(θ)\text{cot}\left( 2\pi +\theta \right)=\cot \left( \theta \right)
After plugging these we get:
sin(θ)cos(θ)[tan(θ)+cot(θ)]\sin \left( \theta \right)\cos \left( \theta \right)\left[ \tan \left( \theta \right)+\cot \left( \theta \right) \right]
Now, we use the following formulae:
tan(A)=sin(A)cos(A)tan(A)=\dfrac{sin(A)}{cos(A)}
cot(A)=cos(A)sin(A)cot(A)=\dfrac{cos(A)}{sin(A)}
After putting these we get:
sin(θ)cos(θ)[sin(θ)cos(θ)+cos(θ)sin(θ)]\sin \left( \theta \right)\cos \left( \theta \right)\left[ \dfrac{sin(\theta )}{cos(\theta )}+\dfrac{cos(\theta )}{sin(\theta )} \right]
sin(θ)cos(θ)[sin2(θ)+cos2(θ)cos(θ)sin(θ)]\Rightarrow \sin \left( \theta \right)\cos \left( \theta \right)\left[ \dfrac{si{{n}^{2}}(\theta )+co{{s}^{2}}(\theta )}{cos(\theta )sin(\theta )} \right]
Now, we use
sin2(A)+cos2(A)=1si{{n}^{2}}(A)+co{{s}^{2}}(A)=1
And this holds as true for anyAA. So, we get:
sin(θ)cos(θ)[1cos(θ)sin(θ)]=1=RHS\sin \left( \theta \right)\cos \left( \theta \right)\left[ \dfrac{1}{cos(\theta )sin(\theta )} \right]=1=RHS
Hence, proved.

Note: Most of the time, while using the trigonometric formulae, we may plug in the wrong equations. So, the trigonometric formulae must be learned properly so that you are able to prove the quality of expressions without any mistakes. Moreover, always start with the side that is complex. As in this question, if you start with the left hand side then you will have no operation to perform and you will get stuck, so always start with the complex side and try to reduce it to the expression that doesn’t involve much terms.