Solveeit Logo

Question

Question: Prove that, \[{{\left( 1+\tan A.\tan B \right)}^{2}}+{{\left( \tan A-\tan B \right)}^{2}}={{\sec }^{...

Prove that, (1+tanA.tanB)2+(tanAtanB)2=sec2Asec2B{{\left( 1+\tan A.\tan B \right)}^{2}}+{{\left( \tan A-\tan B \right)}^{2}}={{\sec }^{2}}A{{\sec }^{2}}B.

Explanation

Solution

The LHS and RHS of the given expression is (1+tanA.tanB)2+(tanAtanB){{\left( 1+\tan A.\tan B \right)}^{2}}+\left( \tan A-\tan B \right) and
sec2Asec2B{{\sec }^{2}}A{{\sec }^{2}}B respectively. Use the formulas, (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab and (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab , and expand the LHS of the expression. After expanding the LHS, simplify it further. Now, the identity sec2xtan2x=1secx=tan2x+1{{\sec }^{2}}x-{{\tan }^{2}}x=1\Rightarrow \sec x={{\tan }^{2}}x+1 and solve it further.

Complete step-by-step solution:
According to the question, we are asked to prove (1+tanA.tanB)2+(tanAtanB)2=sec2Asec2B{{\left( 1+\tan A.\tan B \right)}^{2}}+{{\left( \tan A-\tan B \right)}^{2}}={{\sec }^{2}}A{{\sec }^{2}}B .
In the LHS, we have
(1+tanA.tanB)2+(tanAtanB)2{{\left( 1+\tan A.\tan B \right)}^{2}}+{{\left( \tan A-\tan B \right)}^{2}} ………………………………….(1)
Similarly, in RHS we have
sec2Asec2B{{\sec }^{2}}A{{\sec }^{2}}B ……………………………………….(2)
To prove this, we have to make the LHS equal to RHS of the given expression.
Let us solve the LHS side first.
We know the formula, (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab ………………………………………….(3)
Now, on replacing aa by 1 and bb by tanA.tanB\tan A.\tan B in equation (3), we get
(1+tanA.tanB)2=12+(tanA.tanB)2+2(1)(tanA.tanB)=1+tan2A.tan2B+2tanA.tanB\Rightarrow {{\left( 1+\tan A.\tan B \right)}^{2}}={{1}^{2}}+{{\left( \tan A.\tan B \right)}^{2}}+2\left( 1 \right)\left( \tan A.\tan B \right)=1+{{\tan }^{2}}A.{{\tan }^{2}}B+2\tan A.\tan B…………………………………………(4)
We also know the formula, (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab ………………………………………….(5)
Now, on replacing aa by tanA\tan A and bb by tanB\tan B in equation (5), we get
(tanAtanB)2=(tanA)2+(tanB)22tanA.tanB=tan2A+tan2B2tanA.tanB\Rightarrow {{\left( \tan A-\tan B \right)}^{2}}={{\left( \tan A \right)}^{2}}+{{\left( \tan B \right)}^{2}}-2\tan A.\tan B={{\tan }^{2}}A+{{\tan }^{2}}B-2\tan A.\tan B …………………………………………………..(6)
Now, from equation (1), equation (4), and equation (6), we get
=(1+tanA.tanB)2+(tanAtanB)2={{\left( 1+\tan A.\tan B \right)}^{2}}+{{\left( \tan A-\tan B \right)}^{2}}
=1+tan2A.tan2B+2tanA.tanB+tan2A+tan2B2tanA.tanB=1+{{\tan }^{2}}A.{{\tan }^{2}}B+2\tan A.\tan B+{{\tan }^{2}}A+{{\tan }^{2}}B-2\tan A.\tan B ………………………………….(7)
On arranging and modifying the above equation, we get

& =1+{{\tan }^{2}}A.{{\tan }^{2}}B+{{\tan }^{2}}A+{{\tan }^{2}}B \\\ & =1+{{\tan }^{2}}A+{{\tan }^{2}}A.{{\tan }^{2}}B+{{\tan }^{2}}B \\\ \end{aligned}$$ $$=\left( 1+{{\tan }^{2}}A \right)+{{\tan }^{2}}B\left( 1+{{\tan }^{2}}A \right)$$ ………………………………………….(8) Now, on taking the term $$\left( 1+{{\tan }^{2}}A \right)$$ as common from the whole, we get $$=\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\tan }^{2}}B \right)$$ ………………………………………………(9) We know the identity $${{\sec }^{2}}x-{{\tan }^{2}}x=1$$ ……………………………..(10) Replacing $$x$$ by $$A$$ in equation (10), we get $$\Rightarrow {{\sec }^{2}}A-{{\tan }^{2}}A=1$$ $$\Rightarrow {{\sec }^{2}}A=1+{{\tan }^{2}}A$$ ……………………………………(11) Similarly, on replacing $$x$$ by $$B$$ in equation (10), we get $$\Rightarrow {{\sec }^{2}}B-{{\tan }^{2}}B=1$$ $$\Rightarrow {{\sec }^{2}}B=1+{{\tan }^{2}}B$$ ……………………………………(12) Now, on replacing $$\left( 1+{{\tan }^{2}}A \right)$$ by $${{\sec }^{2}}A$$ and $$\left( 1+{{\tan }^{2}}B \right)$$ by $${{\sec }^{2}}B$$ in equation (9), we get $$={{\sec }^{2}}A.{{\sec }^{2}}B$$ ………………………………………….(13) From equation (13), we have the LHS equal to $${{\sec }^{2}}A.{{\sec }^{2}}B$$ . Similarly, from equation (2), we have the RHS equal to $${{\sec }^{2}}A.{{\sec }^{2}}B$$ . Therefore, we can say that LHS = RHS. Hence, proved. **Note:** In this question, one might think to simplify the LHS of the given expression using the property, $$\tan x=\dfrac{\sin x}{\cos x}$$ . Doing this may lead to complexity that can result in calculation mistakes. Therefore, avoid using the property, $$\tan x=\dfrac{\sin x}{\cos x}$$ for the simplification of the given expression.