Solveeit Logo

Question

Question: Prove that \[\left( {1 + \sec 2\theta } \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\...

Prove that (1+sec2θ)(1+sec4θ)(1+sec8θ)......(1+sec2nθ)=tan(2nθ)cotθ\left( {1 + \sec 2\theta } \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right) = \tan \left( {{2^n}\theta } \right) \cdot \cot \theta

Explanation

Solution

To prove the given trigonometric functions, consider the LHS terms and apply the trigonometric identities functions in which as we know sec2θ=1cos2θ\sec 2\theta = \dfrac{1}{{\cos 2\theta }}, in same way we can apply for sec4θ\sec 4\theta and sec8θ\sec 8\theta , hence further simplifying the terms we get LHS = RHS.

Complete step by step solution:
(1+sec2θ)(1+sec4θ)(1+sec8θ)......(1+sec2nθ)=tan(2nθ)cotθ\left( {1 + \sec 2\theta } \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right) = \tan \left( {{2^n}\theta } \right) \cdot \cot \theta
Let us consider the LHS terms as:
(1+sec2θ)(1+sec4θ)(1+sec8θ)......(1+sec2nθ)\left( {1 + \sec 2\theta } \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)
Applying the trigonometric identities to the terms we, we know that sec2θ=1cos2θ\sec 2\theta = \dfrac{1}{{\cos 2\theta }}, hence the equation is:
(1+1cos2θ)(1+sec4θ)(1+sec8θ)......(1+sec2nθ)\left( {1 + \dfrac{1}{{\cos 2\theta }}} \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)
(1+1+tan2θ1tan2θ)(1+sec4θ)(1+sec8θ)......(1+sec2nθ)\Rightarrow\left( {1 + \dfrac{{1 + {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}} \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)
Simplifying the trigonometric functions as:
(21tan2θ)(1+sec4θ)(1+sec8θ)......(1+sec2nθ)\left( {\dfrac{2}{{1 - {{\tan }^2}\theta }}} \right)\left( {1 + \sec 4\theta } \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)
Now multiply and divide the terms with tanθ\tan \theta
1tanθ(2tanθ1tan2θ)(1+1cos22θ)(1+sec8θ)......(1+sec2nθ)\dfrac{1}{{\tan \theta }}\left( {\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}} \right)\left( {1 + \dfrac{1}{{\cos {2^2}\theta }}} \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)
cotθtan2θ(1+1+tan22θ1tan22θ)(1+sec8θ)......(1+sec2nθ)\Rightarrow\cot \theta \cdot \tan 2\theta \left( {1 + \dfrac{{1 + {{\tan }^2}2\theta }}{{1 - {{\tan }^2}2\theta }}} \right)\left( {1 + \sec 8\theta } \right)......\left( {1 + \sec {2^n}\theta } \right)
cotθ(2tan2θ1tan22θ)(1+1cos23θ)......(1+sec2nθ)\Rightarrow\cot \theta \left( {\dfrac{{2\tan 2\theta }}{{1 - {{\tan }^2}2\theta }}} \right)\left( {1 + \dfrac{1}{{\cos {2^3}\theta }}} \right)......\left( {1 + \sec {2^n}\theta } \right)
cotθtan4θ(1+1+tan24θ1tan24θ)......(1+sec22θ)\Rightarrow\cot \theta \cdot \tan 4\theta \left( {1 + \dfrac{{1 + {{\tan }^2}4\theta }}{{1 - {{\tan }^2}4\theta }}} \right)......\left( {1 + \sec {2^2}\theta } \right)
If we go n times ellipse then
cotθtan2nθ\cot \theta \cdot \tan {2^n}\theta
\therefore tan2nθtan20θ\dfrac{{\tan {2^n}\theta }}{{\tan {2^0}\theta }} = RHS

As, LHS = RHS.Hence it is proved.

Note: The key point to prove trigonometric functions is that we must know all the trigonometric identity functions, to solve the terms in the given expression such that to prove LHS = RHS we must consider any of the terms of side and must know all the basic identities and relation between the trigonometric functions.