Solveeit Logo

Question

Question: Prove that \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta ...

Prove that (1+1tan2θ)(1+1cot2θ)=1sin2θsin4θ\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }.

Explanation

Solution

We start solving the problem by considering the L.H.S (Left hand side) of the given proof and substituting 1tanθ=cotθ\dfrac{1}{\tan \theta }=\cot \theta and 1cotθ=tanθ\dfrac{1}{\cot \theta }=\tan \theta in it. We then make use of the trigonometric identities (1+cot2θ)=cosec2θ\left( 1+{{\cot }^{2}}\theta \right)={{\operatorname{cosec}}^{2}}\theta and (1+tan2θ)=sec2θ\left( 1+{{\tan }^{2}}\theta \right)={{\sec }^{2}}\theta to proceed through the problem. We then make use of the results secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }, cosecθ=1sinθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta } and cos2θ=1sin2θ{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta to proceed further into the problem. We then make the necessary calculations to complete the required proof.

Complete step by step answer:
According to the problem, we need to prove the result (1+1tan2θ)(1+1cot2θ)=1sin2θsin4θ\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }.
Let us consider the L.H.S (Left Hand Side) and try to prove it equal to the R.H.S (Right Hand Side).
So, we have (1+1tan2θ)(1+1cot2θ)\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right).
We know that 1tanθ=cotθ\dfrac{1}{\tan \theta }=\cot \theta and 1cotθ=tanθ\dfrac{1}{\cot \theta }=\tan \theta . Let us substitute these results.
(1+1tan2θ)(1+1cot2θ)=(1+cot2θ)(1+tan2θ)\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+{{\cot }^{2}}\theta \right)\left( 1+{{\tan }^{2}}\theta \right) ---(1).
We know that (1+cot2θ)=cosec2θ\left( 1+{{\cot }^{2}}\theta \right)={{\operatorname{cosec}}^{2}}\theta and (1+tan2θ)=sec2θ\left( 1+{{\tan }^{2}}\theta \right)={{\sec }^{2}}\theta . Let us substitute these results in equation (1).
(1+1tan2θ)(1+1cot2θ)=(cosec2θ)(sec2θ)\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( {{\operatorname{cosec}}^{2}}\theta \right)\left( {{\sec }^{2}}\theta \right) ---(2).
We know that secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and cosecθ=1sinθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }. Let us substitute these results in equation (2).
(1+1tan2θ)(1+1cot2θ)=(1sin2θ)(1cos2θ)\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)\left( \dfrac{1}{{{\cos }^{2}}\theta } \right).
(1+1tan2θ)(1+1cot2θ)=1sin2θcos2θ\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta } ---(3).
We know that sin2θ+cos2θ=1cos2θ=1sin2θ{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Leftrightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta . Let us substitute this result in equation (3).
(1+1tan2θ)(1+1cot2θ)=1sin2θ(1sin2θ)\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta \left( 1-{{\sin }^{2}}\theta \right)}.
(1+1tan2θ)(1+1cot2θ)=1sin2θsin4θ\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }.
So, we can see that L.H.S (Left hand side) is equal to R.H.S (Right Hand Side).

∴ We have proved the trigonometric result (1+1tan2θ)(1+1cot2θ)=1sin2θsin4θ\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }.

Note: We should perform each step carefully in order to complete the proof properly. We can also solve this problem as shown below:
We have (1+1tan2θ)(1+1cot2θ)\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right) ---(4).
We know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }. Let us substitute this results in equation (4).
(1+1tan2θ)(1+1cot2θ)=(1+1sin2θcos2θ)(1+1cos2θsin2θ)\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+\dfrac{1}{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }} \right)\left( 1+\dfrac{1}{\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }} \right).
(1+1tan2θ)(1+1cot2θ)=(1+cos2θsin2θ)(1+sin2θcos2θ)\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( 1+\dfrac{{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right)\left( 1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right).
(1+1tan2θ)(1+1cot2θ)=(sin2θ+cos2θsin2θ)(cos2θ+sin2θcos2θ)\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta } \right)\left( \dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right) ---(5).
We know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. Let us substitute this in equation (5).
(1+1tan2θ)(1+1cot2θ)=(1sin2θ)(1cos2θ)\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\left( \dfrac{1}{{{\sin }^{2}}\theta } \right)\left( \dfrac{1}{{{\cos }^{2}}\theta } \right).
(1+1tan2θ)(1+1cot2θ)=1sin2θcos2θ\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta } ---(6).
We know that sin2θ+cos2θ=1cos2θ=1sin2θ{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\Leftrightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta . Let us substitute this result in equation (6).
(1+1tan2θ)(1+1cot2θ)=1sin2θ(1sin2θ)\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta \left( 1-{{\sin }^{2}}\theta \right)}.
(1+1tan2θ)(1+1cot2θ)=1sin2θsin4θ\Rightarrow \left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta } \right)=\dfrac{1}{{{\sin }^{2}}\theta -{{\sin }^{4}}\theta }.