Question
Question: Prove that \[\left( 1+\dfrac{1}{{{\tan }^{2}}\theta } \right)\left( 1+\dfrac{1}{{{\cot }^{2}}\theta ...
Prove that (1+tan2θ1)(1+cot2θ1)=sin2θ−sin4θ1.
Solution
We start solving the problem by considering the L.H.S (Left hand side) of the given proof and substituting tanθ1=cotθ and cotθ1=tanθ in it. We then make use of the trigonometric identities (1+cot2θ)=cosec2θ and (1+tan2θ)=sec2θ to proceed through the problem. We then make use of the results secθ=cosθ1, cosecθ=sinθ1 and cos2θ=1−sin2θ to proceed further into the problem. We then make the necessary calculations to complete the required proof.
Complete step by step answer:
According to the problem, we need to prove the result (1+tan2θ1)(1+cot2θ1)=sin2θ−sin4θ1.
Let us consider the L.H.S (Left Hand Side) and try to prove it equal to the R.H.S (Right Hand Side).
So, we have (1+tan2θ1)(1+cot2θ1).
We know that tanθ1=cotθ and cotθ1=tanθ. Let us substitute these results.
⇒(1+tan2θ1)(1+cot2θ1)=(1+cot2θ)(1+tan2θ) ---(1).
We know that (1+cot2θ)=cosec2θ and (1+tan2θ)=sec2θ. Let us substitute these results in equation (1).
⇒(1+tan2θ1)(1+cot2θ1)=(cosec2θ)(sec2θ) ---(2).
We know that secθ=cosθ1 and cosecθ=sinθ1. Let us substitute these results in equation (2).
⇒(1+tan2θ1)(1+cot2θ1)=(sin2θ1)(cos2θ1).
⇒(1+tan2θ1)(1+cot2θ1)=sin2θcos2θ1 ---(3).
We know that sin2θ+cos2θ=1⇔cos2θ=1−sin2θ. Let us substitute this result in equation (3).
⇒(1+tan2θ1)(1+cot2θ1)=sin2θ(1−sin2θ)1.
⇒(1+tan2θ1)(1+cot2θ1)=sin2θ−sin4θ1.
So, we can see that L.H.S (Left hand side) is equal to R.H.S (Right Hand Side).
∴ We have proved the trigonometric result (1+tan2θ1)(1+cot2θ1)=sin2θ−sin4θ1.
Note: We should perform each step carefully in order to complete the proof properly. We can also solve this problem as shown below:
We have (1+tan2θ1)(1+cot2θ1) ---(4).
We know that tanθ=cosθsinθ and cotθ=sinθcosθ. Let us substitute this results in equation (4).
⇒(1+tan2θ1)(1+cot2θ1)=1+cos2θsin2θ11+sin2θcos2θ1.
⇒(1+tan2θ1)(1+cot2θ1)=(1+sin2θcos2θ)(1+cos2θsin2θ).
⇒(1+tan2θ1)(1+cot2θ1)=(sin2θsin2θ+cos2θ)(cos2θcos2θ+sin2θ) ---(5).
We know that sin2θ+cos2θ=1. Let us substitute this in equation (5).
⇒(1+tan2θ1)(1+cot2θ1)=(sin2θ1)(cos2θ1).
⇒(1+tan2θ1)(1+cot2θ1)=sin2θcos2θ1 ---(6).
We know that sin2θ+cos2θ=1⇔cos2θ=1−sin2θ. Let us substitute this result in equation (6).
⇒(1+tan2θ1)(1+cot2θ1)=sin2θ(1−sin2θ)1.
⇒(1+tan2θ1)(1+cot2θ1)=sin2θ−sin4θ1.