Question
Question: Prove that: \(\left( {1 + {{\cot }^2}\theta } \right).\left( {1 - \cos \theta } \right).\left( {1 ...
Prove that:
(1+cot2θ).(1−cosθ).(1+cosθ)=1
Explanation
Solution
Hint- Use the following formulae cotθ=sinθcosθ, (a−b)(a+b)=a2−b2
We have to prove
(1+cot2θ).(1−cosθ).(1+cosθ)=1
Consider L.H.S
(1+cot2θ).(1−cosθ).(1+cosθ)
As we know
cotθ=sinθcosθ, (a−b)(a+b)=a2−b2
So, apply these trigonometric properties in above equation
⇒(1+(sinθcosθ)2)(1−cos2θ) ⇒(sin2θsin2θ+cos2θ)(1−cos2θ)
Now we know that sin2θ+cos2θ=1, (1−cos2θ)=sin2θ
So, apply these trigonometric properties in above equation
⇒(sin2θsin2θ+cos2θ)(1−cos2θ)=sin2θ1sin2θ =1
= R.H.S
Hence Proved
Note- In such types of questions always remember the general trigonometric identities which are stated above and using these properties simplify the given equation we will get the required answer.