Solveeit Logo

Question

Question: Prove that: \(\left( {1 + {{\cot }^2}\theta } \right).\left( {1 - \cos \theta } \right).\left( {1 ...

Prove that:
(1+cot2θ).(1cosθ).(1+cosθ)=1\left( {1 + {{\cot }^2}\theta } \right).\left( {1 - \cos \theta } \right).\left( {1 + \cos \theta } \right) = 1

Explanation

Solution

Hint- Use the following formulae  cotθ=cosθsinθ, (ab)(a+b)=a2b2{\text{ }}\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}

We have to prove
(1+cot2θ).(1cosθ).(1+cosθ)=1\left( {1 + {{\cot }^2}\theta } \right).\left( {1 - \cos \theta } \right).\left( {1 + \cos \theta } \right) = 1
Consider L.H.S
(1+cot2θ).(1cosθ).(1+cosθ)\left( {1 + {{\cot }^2}\theta } \right).\left( {1 - \cos \theta } \right).\left( {1 + \cos \theta } \right)
As we know
 cotθ=cosθsinθ, (ab)(a+b)=a2b2{\text{ }}\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}
So, apply these trigonometric properties in above equation
(1+(cosθsinθ)2)(1cos2θ) (sin2θ+cos2θsin2θ)(1cos2θ)  \Rightarrow \left( {1 + {{\left( {\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}^2}} \right)\left( {1 - {{\cos }^2}\theta } \right) \\\ \Rightarrow \left( {\dfrac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{{{\sin }^2}\theta }}} \right)\left( {1 - {{\cos }^2}\theta } \right) \\\
Now we know that sin2θ+cos2θ=1, (1cos2θ)=sin2θ{\sin ^2}\theta + {\cos ^2}\theta = 1,{\text{ }}\left( {1 - {{\cos }^2}\theta } \right) = {\sin ^2}\theta
So, apply these trigonometric properties in above equation
(sin2θ+cos2θsin2θ)(1cos2θ)=1sin2θsin2θ =1  \Rightarrow \left( {\dfrac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{{{\sin }^2}\theta }}} \right)\left( {1 - {{\cos }^2}\theta } \right) = \dfrac{1}{{{{\sin }^2}\theta }}{\sin ^2}\theta \\\ = 1 \\\
= R.H.S
Hence Proved

Note- In such types of questions always remember the general trigonometric identities which are stated above and using these properties simplify the given equation we will get the required answer.