Solveeit Logo

Question

Question: Prove that \(\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} \) ...

Prove that 0af(x)dx=0af(ax)dx\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} and hence evaluate 0axx+axdx\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} .

Explanation

Solution

We begin by letting x=atx = a - t and the corresponding value of limits. Substitute these values in LHS of the given expression. Apply rules of integration and prove it equal to RHS. Then, let I=0axx+axdxI = \int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} . Replace xx by xax - a and find the value of corresponding integration. Add both the integrations to get a simplified expression. Apply the formula of integration and then put limits to get the required answer.

Complete step-by-step answer:
We have to prove 0af(x)dx=0af(ax)dx\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx}
Let x=atx = a - t
Then, differentiate both sides,
dx=dtdx = - dt
When x=0x = 0, then the value of tt is
0=at t=a  0 = a - t \\\ \Rightarrow t = a \\\
And when x=ax = a, then the value of tt is
a=at t=0  a = a - t \\\ \Rightarrow t = 0 \\\
Substituting the values in LHS of the expression.
0af(x)dx=a0f(at)(dt)=a0f(at)(dt)\int\limits_0^a {f\left( x \right)dx} = \int\limits_a^0 {f\left( {a - t} \right)\left( { - dt} \right)} = - \int\limits_a^0 {f\left( {a - t} \right)\left( {dt} \right)}
We can interchange the limits by multiplying a negative sign.
0af(at)(dt)\int\limits_0^a {f\left( {a - t} \right)\left( {dt} \right)}
On substituting back the value of t=xt = x, we will get,
0af(ax)(dt)\int\limits_0^a {f\left( {a - x} \right)\left( {dt} \right)} , which is equal to RHS.

Now, we have to find the value of 0axx+axdx\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx}
Let I=0axx+axdxI = \int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} eqn. (1)
Replace xx by xax - a in the above equation, as 0af(x)dx=0af(ax)dx\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx}
I=0aaxax+a(ax)dxI = \int\limits_0^a {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - x} + \sqrt {a - \left( {a - x} \right)} }}dx}
I=0aaxax+xdx\Rightarrow I = \int\limits_0^a {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}dx} eqn.(2)
Adding equation (1) and (2),
2I=0axx+axdx+0aaxax+xdx 2I=0ax+axx+axdx 2I=0adx  2I = \int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} + \int\limits_0^a {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}dx} \\\ \Rightarrow 2I = \int\limits_0^a {\dfrac{{\sqrt x + \sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}dx} \\\ \Rightarrow 2I = \int\limits_0^a {dx} \\\
Now, dx=x\int {dx = x}
2I=[x]0a2I = \left[ x \right]_0^a
We will put the limits and divide the equation by 2.
2I=(a0) 2I=a I=a2  2I = \left( {a - 0} \right) \\\ \Rightarrow 2I = a \\\ \Rightarrow I = \dfrac{a}{2} \\\
Hence, the value of 0axx+axdx\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} is a2\dfrac{a}{2}.

Note: Students must know the basic rules of integration, how to change limits and formulas of integration to do these types of questions. Also, we have to find the value of 0axx+axdx\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} using the property proved in previous step. While applying the limits, we apply the upper limit first and then subtract the value of lower limit from it.