Solveeit Logo

Question

Question: Prove that \(\int_{0}^{\dfrac{\pi }{2}}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\dfrac{\pi }{4}}{...

Prove that 0π2f(sin2x)sinxdx=0π4f(cos2x)cosxdx\int_{0}^{\dfrac{\pi }{2}}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\dfrac{\pi }{4}}{f\left( \cos 2x \right)\cos xdx} for all f.

Explanation

Solution

Start from the LHS. Use the fact that abf(x)dx=abf(a+bx)dx\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}. Hence prove that 0π/2f(sin2x)sinxdx=0π/2f(sin2x)(sinx+cosx)2dx\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\dfrac{\left( \sin x+\cos x \right)}{2}dx} . Use the fact that if f(2ax)=f(x)f\left( 2a-x \right)=f\left( x \right), then 02af(x)dx=20af(x)dx\int_{0}^{2a}{f\left( x \right)dx}=2\int_{0}^{a}{f\left( x \right)dx} . Hence prove that 0π/2f(sin2x)sinxdx=0π/4f(sin2x)(sinx+cosx)\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)} . Use the fact that sinx+cosx=2(cos(xπ4))\sin x+\cos x=\sqrt{2}\left( \cos \left( x-\dfrac{\pi }{4} \right) \right) and hence prove that 0π/2f(sin2x)sinxdx=20π/4f(sin2x)cos(xπ4)dx\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\cos \left( x-\dfrac{\pi }{4} \right)dx} . Finally, put xπ4=tx-\dfrac{\pi }{4}=t and hence prove the given result.

Complete step-by-step solution:
Let us take the LHS as I=0π/2f(sin2x)sinxdx    (i)I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\sin xdx}\ \ \ \ \left( i \right)
We know that abf(x)dx=abf(a+bx)dx\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx}
Hence, we have
I=0π/2f(sin2(π2x))sin(π2x)dx =0π/2f(sin(π2x))sin(π2x) \begin{aligned} & I=\int_{0}^{\pi /2}{f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)dx} \\\ & =\int_{0}^{\pi /2}{f\left( \sin \left( \pi -2x \right) \right)\sin \left( \dfrac{\pi }{2}-x \right)} \\\ \end{aligned}
We know that sin(πx)=sinx\sin \left( \pi -x \right)=\sin x and sin(π2x)=cosx\sin \left( \dfrac{\pi }{2}-x \right)=\cos x
Hence, we have
I=0π/2f(sin2x)cosxdx (ii)I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\cos xdx}\text{ }\left( ii \right)
Adding equation (i) and equation (ii), we get
2I=0π/2f(sin2x)(sinx+cosx)dx2I=\int_{0}^{\pi /2}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}
We know that if f(x)=f(2ax)f\left( x \right)=f\left( 2a-x \right), then
Observe that f(sin2x)(sinx+cosx)=f(sin2(π2x))(sin(π2x)+cos(π2x))f\left( \sin 2x \right)\left( \sin x+\cos x \right)=f\left( \sin 2\left( \dfrac{\pi }{2}-x \right) \right)\left( \sin \left( \dfrac{\pi }{2}-x \right)+\cos \left( \dfrac{\pi }{2}-x \right) \right)
Hence, we have
2I=20π/4f(sin2x)(sinx+cosx)dx2I=2\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)dx}
Hence, we have
I=0π/4f(sin2x)(sinx+cosx)dxI=\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \sin x+\cos x \right)}dx
Multiplying and dividing by 2\sqrt{2}, we get
I=20π/4f(sin2x)(12sinx+12cosx)dxI=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \dfrac{1}{\sqrt{2}}\sin x+\dfrac{1}{\sqrt{2}}\cos x \right)}dx
We know that cos(π4)=sin(π4)=12\cos \left( \dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}
Hence, we have
I=20π/4f(sin2x)(cosxcosπ4+sinxsinπ4)dxI=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\left( \cos x\cos \dfrac{\pi }{4}+\sin x\sin \dfrac{\pi }{4} \right)}dx
We know that cosAcosB+sinAsinB=cos(AB)\cos A\cos B+\sin A\sin B=\cos \left( A-B \right)
Hence, we have
I=20π/4f(sin2x)cos(π4x)dxI=\sqrt{2}\int_{0}^{\pi /4}{f\left( \sin 2x \right)\cos \left( \dfrac{\pi }{4}-x \right)}dx
Put π4x=t\dfrac{\pi }{4}-x=t, we have dx = -dt
When x = 0, t=π4t =\dfrac{\pi }{4}
When x=π4,t=0x=\dfrac{\pi }{4}, t=0
Hence, we have
I=2(π40f(sin(2(π4t)))costdt) =20π/4f(cos2t)costdt \begin{aligned} & I=\sqrt{2}\left( -\int_{\dfrac{\pi }{4}}^{0}{f\left( \sin \left( 2\left( \dfrac{\pi }{4}-t \right) \right) \right)\cos tdt} \right) \\\ & =\sqrt{2}\int_{0}^{\pi /4}{f\left( \cos 2t \right)\cos tdt} \\\ \end{aligned}
We know that the change of variable does not affect a definite integral.
Hence, we have
I=0π4f(cos2x)cosxdxI=\int_{0}^{\dfrac{\pi }{4}}{f\left( \cos 2x \right)\cos xdx}
Q.E.D

Note: The identities abf(x)dx=abf(a+bx)dx,aaf(x)=0a(f(x)+f(x))\int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx},\int_{-a}^{a}{f\left( x \right)=\int_{0}^{a}{\left( f\left( x \right)+f\left( -x \right) \right)}} and 02af(x)dx=0a(f(x)+f(2ax))\int_{0}^{2a}{f\left( x \right)d}x=\int_{0}^{a}{\left( f\left( x \right)+f\left( 2a-x \right) \right)} are very important in solving definite integrals. One should consider the use of one of these formulas while solving the question as these make the problem very easy.