Solveeit Logo

Question

Question: Prove that in triangle ABC: \(\left( {\tan A + \tan B + \tan C} \right)\left( {\cot A + \cot B + \co...

Prove that in triangle ABC: (tanA+tanB+tanC)(cotA+cotB+cotC)=1+secAsecBsecC\left( {\tan A + \tan B + \tan C} \right)\left( {\cot A + \cot B + \cot C} \right) = 1 + \sec A\sec B\sec C

Explanation

Solution

Hint – In this question use the angle sum property of triangle to write tan of angle A+B in terms of tan C. Then use the direct formula of tan(A+B)\tan \left( {A + B} \right) that is tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}. Simplify the L.H.S part by writing cot x in terms of cotx=1tanx\cot x = \dfrac{1}{{\tan x}}. This will help getting the right hand side.

Complete step-by-step answer:
As we know in triangle the sum of all angle is 180o=π{180^o} = \pi
A+B+C=π\Rightarrow A + B + C = \pi................... (1)
Now take C to R.H.S and take tan on both sides we have,
tan(A+B)=tan(πC)\Rightarrow \tan \left( {A + B} \right) = \tan \left( {\pi - C} \right)
Now apply tan rule we have,
tanA+tanB1tanAtanB=tanC\Rightarrow \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = - \tan C, [tan(πC)=tanC]\left[ {\because \tan \left( {\pi - C} \right) = - \tan C} \right]
Now simplify it we have,
tanA+tanB=tanC(1tanAtanB)\Rightarrow \tan A + \tan B = - \tan C\left( {1 - \tan A\tan B} \right)
tanA+tanB=tanC+tanAtanBtanC\Rightarrow \tan A + \tan B = - \tan C + \tan A\tan B\tan C
tanA+tanB+tanC=tanAtanBtanC\Rightarrow \tan A + \tan B + \tan C = \tan A\tan B\tan C..................... (2)
Now take L.H.S of the given equation we have,
(tanA+tanB+tanC)(cotA+cotB+cotC)\Rightarrow \left( {\tan A + \tan B + \tan C} \right)\left( {\cot A + \cot B + \cot C} \right)
Now as we know cotx=1tanx\cot x = \dfrac{1}{{\tan x}} so use this property in above equation we have,
(tanA+tanB+tanC)(1tanA+1tanB+1tanC)\Rightarrow \left( {\tan A + \tan B + \tan C} \right)\left( {\dfrac{1}{{\tan A}} + \dfrac{1}{{\tan B}} + \dfrac{1}{{\tan C}}} \right)
Now simplify this equation we have,
(tanA+tanB+tanC)(tanBtanC+tanAtanC+tanAtanBtanAtanBtanC)\Rightarrow \left( {\tan A + \tan B + \tan C} \right)\left( {\dfrac{{\tan B\tan C + \tan A\tan C + \tan A\tan B}}{{\tan A\tan B\tan C}}} \right)
Now substitute the value from equation (2) we have,
(tanAtanBtanC)(tanBtanC+tanAtanC+tanAtanBtanAtanBtanC)\Rightarrow \left( {\tan A\tan B\tan C} \right)\left( {\dfrac{{\tan B\tan C + \tan A\tan C + \tan A\tan B}}{{\tan A\tan B\tan C}}} \right)
tanBtanC+tanAtanC+tanAtanB\Rightarrow \tan B\tan C + \tan A\tan C + \tan A\tan B
Now as we know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} so use this property in above equation we have,
sinBcosBsinCcosC+sinAcosAsinCcosC+sinAcosAsinBcosB\Rightarrow \dfrac{{\sin B}}{{\cos B}}\dfrac{{\sin C}}{{\cos C}} + \dfrac{{\sin A}}{{\cos A}}\dfrac{{\sin C}}{{\cos C}} + \dfrac{{\sin A}}{{\cos A}}\dfrac{{\sin B}}{{\cos B}}
Now take cos A cos B cos C as L.C.M we have,
cosAsinBsinC+cosBsinAsinC+cosCsinAsinBcosAcosBcosC\Rightarrow \dfrac{{\cos A\sin B\sin C + \cos B\sin A\sin C + \cos C\sin A\sin B}}{{\cos A\cos B\cos C}}
Now take sin C common from the numerator first and second term we have,
sinC(cosAsinB+cosBsinA)+cosCsinAsinBcosAcosBcosC\Rightarrow \dfrac{{\sin C\left( {\cos A\sin B + \cos B\sin A} \right) + \cos C\sin A\sin B}}{{\cos A\cos B\cos C}}
Now as we know that sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B so we have,
sinCsin(A+B)+cosCsinAsinBcosAcosBcosC\Rightarrow \dfrac{{\sin C\sin \left( {A + B} \right) + \cos C\sin A\sin B}}{{\cos A\cos B\cos C}}
Now from equation (1) we have,
sinCsin(πC)+cosCsinAsinBcosAcosBcosC\Rightarrow \dfrac{{\sin C\sin \left( {\pi - C} \right) + \cos C\sin A\sin B}}{{\cos A\cos B\cos C}}
sin2C+cosCsinAsinBcosAcosBcosC\Rightarrow \dfrac{{{{\sin }^2}C + \cos C\sin A\sin B}}{{\cos A\cos B\cos C}}, [sin(πC)=sinC]\left[ {\because \sin \left( {\pi - C} \right) = \sin C} \right]
Now use sin2C=1cos2C{\sin ^2}C = 1 - {\cos ^2}C so we have,
1cos2C+cosCsinAsinBcosAcosBcosC\Rightarrow \dfrac{{1 - {{\cos }^2}C + \cos C\sin A\sin B}}{{\cos A\cos B\cos C}}
1cosAcosBcosCcosC(cosCsinAsinB)cosAcosBcosC\Rightarrow \dfrac{1}{{\cos A\cos B\cos C}} - \dfrac{{\cos C\left( {\cos C - \sin A\sin B} \right)}}{{\cos A\cos B\cos C}}
1cosAcosBcosC(cosCsinAsinB)cosAcosB\Rightarrow \dfrac{1}{{\cos A\cos B\cos C}} - \dfrac{{\left( {\cos C - \sin A\sin B} \right)}}{{\cos A\cos B}}
Now from equation (1) C=π(A+B)C = \pi - \left( {A + B} \right) so we have,
1cosAcosBcosC(cos(π(A+B))sinAsinB)cosAcosB\Rightarrow \dfrac{1}{{\cos A\cos B\cos C}} - \dfrac{{\left( {\cos \left( {\pi - \left( {A + B} \right)} \right) - \sin A\sin B} \right)}}{{\cos A\cos B}}
Now as we know that cos(πθ)=cosθ\cos \left( {\pi - \theta } \right) = - \cos \theta so we have,
1cosAcosBcosC(cos(A+B)sinAsinB)cosAcosB\Rightarrow \dfrac{1}{{\cos A\cos B\cos C}} - \dfrac{{\left( { - \cos \left( {A + B} \right) - \sin A\sin B} \right)}}{{\cos A\cos B}}
1cosAcosBcosC+cos(A+B)+sinAsinBcosAcosB\Rightarrow \dfrac{1}{{\cos A\cos B\cos C}} + \dfrac{{\cos \left( {A + B} \right) + \sin A\sin B}}{{\cos A\cos B}}
Now as we know that cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B so use this we have,
1cosAcosBcosC+cosAcosBsinAsinB+sinAsinBcosAcosB\Rightarrow \dfrac{1}{{\cos A\cos B\cos C}} + \dfrac{{\cos A\cos B - \sin A\sin B + \sin A\sin B}}{{\cos A\cos B}}
1cosAcosBcosC+cosAcosBcosAcosB\Rightarrow \dfrac{1}{{\cos A\cos B\cos C}} + \dfrac{{\cos A\cos B}}{{\cos A\cos B}}
1+1cosAcosBcosC\Rightarrow 1 + \dfrac{1}{{\cos A\cos B\cos C}}
Now use 1cosx=secx\dfrac{1}{{\cos x}} = \sec x so we have,
1+secAsecBsecC\Rightarrow 1 + \sec A\sec B\sec C
= R.H.S
Hence proved.

Note – It is always advisable to remember the direct trigonometric identities like some of them are being mentioned above. Other important identities includesin2x+cos2x=1, 1 + tan2x=sec2x{\sin ^2}x + {\cos ^2}x = 1,{\text{ 1 + ta}}{{\text{n}}^2}x = {\sec ^2}x, tanx = sinxcosx,secx=1cosx,cosecx=1sinx{\text{tanx = }}\dfrac{{\sin x}}{{\cos x}},\sec x = \dfrac{1}{{\cos x}},\cos ecx = \dfrac{1}{{\sin x}}. These identities help save a lot of time, for these kinds of problems.