Question
Question: Prove that in triangle ABC: \(\left( {\tan A + \tan B + \tan C} \right)\left( {\cot A + \cot B + \co...
Prove that in triangle ABC: (tanA+tanB+tanC)(cotA+cotB+cotC)=1+secAsecBsecC
Solution
Hint – In this question use the angle sum property of triangle to write tan of angle A+B in terms of tan C. Then use the direct formula of tan(A+B) that is tan(A+B)=1−tanAtanBtanA+tanB. Simplify the L.H.S part by writing cot x in terms of cotx=tanx1. This will help getting the right hand side.
Complete step-by-step answer:
As we know in triangle the sum of all angle is 180o=π
⇒A+B+C=π................... (1)
Now take C to R.H.S and take tan on both sides we have,
⇒tan(A+B)=tan(π−C)
Now apply tan rule we have,
⇒1−tanAtanBtanA+tanB=−tanC, [∵tan(π−C)=−tanC]
Now simplify it we have,
⇒tanA+tanB=−tanC(1−tanAtanB)
⇒tanA+tanB=−tanC+tanAtanBtanC
⇒tanA+tanB+tanC=tanAtanBtanC..................... (2)
Now take L.H.S of the given equation we have,
⇒(tanA+tanB+tanC)(cotA+cotB+cotC)
Now as we know cotx=tanx1 so use this property in above equation we have,
⇒(tanA+tanB+tanC)(tanA1+tanB1+tanC1)
Now simplify this equation we have,
⇒(tanA+tanB+tanC)(tanAtanBtanCtanBtanC+tanAtanC+tanAtanB)
Now substitute the value from equation (2) we have,
⇒(tanAtanBtanC)(tanAtanBtanCtanBtanC+tanAtanC+tanAtanB)
⇒tanBtanC+tanAtanC+tanAtanB
Now as we know that tanx=cosxsinx so use this property in above equation we have,
⇒cosBsinBcosCsinC+cosAsinAcosCsinC+cosAsinAcosBsinB
Now take cos A cos B cos C as L.C.M we have,
⇒cosAcosBcosCcosAsinBsinC+cosBsinAsinC+cosCsinAsinB
Now take sin C common from the numerator first and second term we have,
⇒cosAcosBcosCsinC(cosAsinB+cosBsinA)+cosCsinAsinB
Now as we know that sin(A+B)=sinAcosB+cosAsinB so we have,
⇒cosAcosBcosCsinCsin(A+B)+cosCsinAsinB
Now from equation (1) we have,
⇒cosAcosBcosCsinCsin(π−C)+cosCsinAsinB
⇒cosAcosBcosCsin2C+cosCsinAsinB, [∵sin(π−C)=sinC]
Now use sin2C=1−cos2C so we have,
⇒cosAcosBcosC1−cos2C+cosCsinAsinB
⇒cosAcosBcosC1−cosAcosBcosCcosC(cosC−sinAsinB)
⇒cosAcosBcosC1−cosAcosB(cosC−sinAsinB)
Now from equation (1) C=π−(A+B) so we have,
⇒cosAcosBcosC1−cosAcosB(cos(π−(A+B))−sinAsinB)
Now as we know that cos(π−θ)=−cosθ so we have,
⇒cosAcosBcosC1−cosAcosB(−cos(A+B)−sinAsinB)
⇒cosAcosBcosC1+cosAcosBcos(A+B)+sinAsinB
Now as we know that cos(A+B)=cosAcosB−sinAsinB so use this we have,
⇒cosAcosBcosC1+cosAcosBcosAcosB−sinAsinB+sinAsinB
⇒cosAcosBcosC1+cosAcosBcosAcosB
⇒1+cosAcosBcosC1
Now use cosx1=secx so we have,
⇒1+secAsecBsecC
= R.H.S
Hence proved.
Note – It is always advisable to remember the direct trigonometric identities like some of them are being mentioned above. Other important identities includesin2x+cos2x=1, 1 + tan2x=sec2x, tanx = cosxsinx,secx=cosx1,cosecx=sinx1. These identities help save a lot of time, for these kinds of problems.