Solveeit Logo

Question

Question: Prove that in any triangle \({{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-2\sin A\sin B\sin C\)...

Prove that in any triangle cos2A+cos2Bcos2C=12sinAsinBsinC{{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-2\sin A\sin B\sin C

Explanation

Solution

We will first use the trigonometric identity that sin2B+cos2B=1{{\sin }^{2}}B+{{\cos }^{2}}B=1 to simplify the left hand side of the equation to be proved then we will use the identity that cos2Asin2B=cos(A+B)cos(AB){{\cos }^{2}}A-{{\sin }^{2}}B=\cos \left( A+B \right)\cos \left( A-B \right) to combine the cosine terms and take cosC\cos C common in the left hand side then we will use the trigonometric identity that cosC+cosD=2cos(C+D2)sin(DC2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right) to further simplify the left hand side and made it equal to the right hand side.

Complete step-by-step answer:
We have been given a triangle ABC and we have to prove that cos2A+cos2Bcos2C=12sinAsinBsinC{{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-2\sin A\sin B\sin C
We will first draw a ΔABC\Delta ABC and label its sides as a, b, c

Now, we will take the LHS of the question and prove it to be equal to RHS. In LHS we have cos2A+cos2Bcos2C{{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C
Now we know that sin2B+cos2B=1{{\sin }^{2}}B+{{\cos }^{2}}B=1
Therefore cos2B=1sin2B{{\cos }^{2}}B=1-{{\sin }^{2}}Busing this we have,
cos2A+cos2Bcos2C=cos2A+1sin2Bcos2C=1+(cos2Asin2B)cos2C{{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C={{\cos }^{2}}A+1-{{\sin }^{2}}B-{{\cos }^{2}}C=1+\left( {{\cos }^{2}}A-{{\sin }^{2}}B \right)-co{{s}^{2}}C
Now we know the trigonometric identity that,
cos2Asin2B=cos(A+B)cos(AB){{\cos }^{2}}A-{{\sin }^{2}}B=\cos \left( A+B \right)\cos \left( A-B \right)
So, we have
cos2A+cos2Bcos2C=1+(cos(A+B)cos(AB))cos2C{{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1+\left( \cos \left( A+B \right)\cos \left( A-B \right) \right)-{{\cos }^{2}}C
Also, now we know that according to angle sum property of triangle we have
A+B+C=π A+B=πC \begin{aligned} & A+B+C=\pi \\\ & A+B=\pi -C \\\ \end{aligned}
So, using this we have,
cos2A+cos2Bcos2C=1+cos(πC)cos(AB)cos2C{{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1+\cos \left( \pi -C \right)\cos \left( A-B \right)-{{\cos }^{2}}C
Also, we know that
cos(πC)=cosC\cos \left( \pi -C \right)=-\cos C
So we have
cos2A+cos2Bcos2C=1cosC(cos(AB)+cosC){{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-\cos C\left( \cos \left( A-B \right)+\cos C \right)
Also, we know that
cosC=cos(π(A+B))\cos C=\cos \left( \pi -\left( A+B \right) \right)
cos2A+cos2Bcos2C=1cosC(cos(AB)+cos(π(A+B))){{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-\cos C\left( \cos \left( A-B \right)+\cos \left( \pi -\left( A+B \right) \right) \right)
=1cosC(cos(AB)+cos(A+B))=1-\cos C\left( \cos \left( A-B \right)+\cos \left( A+B \right) \right)
Now using the trigonometric identity that
cosC+cosD=2sin(C+D2)sin(DC2)\operatorname{cosC}+cosD=2sin\left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)
We have,
cos2A+cos2Bcos2C=1cosC(2sin(AB+A+B2)sin(A+BA+B2)){{\cos }^{2}}A+{{\cos }^{2}}B-{{\cos }^{2}}C=1-\cos C\left( 2\sin \left( \dfrac{A-B+A+B}{2} \right)\sin \left( \dfrac{A+B-A+B}{2} \right) \right)
=1cosC(2sin(2A2)sin(2B2))=1-\cos C\left( 2\sin \left( \dfrac{2A}{2} \right)\sin \left( \dfrac{2B}{2} \right) \right)
=1cosC(2sinAsinB)=1-\cos C\left( 2\sin A\sin B \right)
=12sinAsinBcosC=1-2\sin A\sin B\cos C
Since, LHS = RHS
Hence proved

Note: In these types of questions it is very important to remember trigonometric identities like
cosA+cosB=2sin(A+B2)sin(BA2) sin2A+cos2A=1 A+B+C=π \begin{aligned} & \cos A+\operatorname{cosB}=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right) \\\ & {{\sin }^{2}}A+{{\cos }^{2}}A=1 \\\ & A+B+C=\pi \\\ \end{aligned}