Solveeit Logo

Question

Question: Prove that if n and r are positive integers \[{n^r} - n{(n - 1)^r} + \dfrac{{n(n - 1)}}{{2!}}{(n -...

Prove that if n and r are positive integers
nrn(n1)r+n(n1)2!(n2)rn(n1)(n2)3!(n3)r+{n^r} - n{(n - 1)^r} + \dfrac{{n(n - 1)}}{{2!}}{(n - 2)^r} - \dfrac{{n(n - 1)(n - 2)}}{{3!}}{(n - 3)^r} + \cdots
is equal to 0 if r be less than n, and to n! if r=n.

Explanation

Solution

Hint-To solve this question, we need to know the basics of Chapter Binomial Theorem. First you should remember the binomial expansion which is given as (x+y)n=r=0nxnryr{(x + y)^n} = \sum\limits_{r = 0}^n {{x^{n - r}}} {y^r}, where, n ∈ N and x,y,∈ R then
nCr = n![r!(n - r)!]{}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}
This is also called the binomial theorem formula which is used for solving many problems related to the expressions having a large number of terms.

Complete step-by-step solution:
Given in the question,
We have two positive integers n and r.
Given expression is:
nrn(n1)r+n(n1)2!(n2)rn(n1)(n2)3!(n3)r+{n^r} - n{(n - 1)^r} + \dfrac{{n(n - 1)}}{{2!}}{(n - 2)^r} - \dfrac{{n(n - 1)(n - 2)}}{{3!}}{(n - 3)^r} + \cdots
Now, as we know,
The Binomial Theorem is the method of expanding an expression which has been raised to any finite power.
Therefore, we use the expansion of ex{e^x}.
ex{e^x}= (1+x+x22!+x33!+x44!+)\left( {1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + \cdots } \right)
By manipulating this we get,
(ex1)n=(x+x22!+x33!+x44!+)n{({e^x} - 1)^n} = {\left( {x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + \cdots } \right)^n}
= xn+{x^n} + terms containing higher powers of x ………..... (1)
Again, by the Binomial Theorem,
(ex1)n=enxne(n1)x+n(n1)1.2e(n2)x{({e^x} - 1)^n} = {e^n}x - n{e^{(n - 1)x}} + \dfrac{{n(n - 1)}}{{1.2}}{e^{(n - 2)x}} - \cdots ……………. (2)
By expanding each of the terms enx{e^{nx}}, e(n1)x{e^{(n - 1)x}}, …. we find that the coefficient of xr{x^r}in above expression of (ex1)n{({e^x} - 1)^n}.
1r!\dfrac{1}{{r!}}(nrn(n1)r+n(n1)2!(n2)rn(n1)(n2)3!(n3)r+{n^r} - n{(n - 1)^r} + \dfrac{{n(n - 1)}}{{2!}}{(n - 2)^r} - \dfrac{{n(n - 1)(n - 2)}}{{3!}}{(n - 3)^r} + \cdots )
and by equating the coefficients of xr{x^r}in (1) and (2) the result follows.
The value of the given expression is equal to 0 if r be less than n, and to n! if r=n.
Thus, overall, we verify and satisfy the given condition of the question.

Note: The total number of terms in the expansion of (x+y)n{\left( {x + y} \right)^n} are (n+1). The sum of exponents of x and y is always n. and The binomial coefficients which are equidistant from the beginning and from the ending are equal i.e.nC0{}^{\text{n}}{{\text{C}}_0}=nCn{}^{\text{n}}{{\text{C}}_{\text{n}}}, nC1{}^{\text{n}}{{\text{C}}_1} = nCn - 1{}^{\text{n}}{{\text{C}}_{{\text{n - 1}}}} ….. etc.