Question
Question: Prove that: (i) \[\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \...
Prove that:
(i) 1−sinAcosA=tan(4π+2A)
(ii) sin20∘sin40∘sin60∘sin80∘=163
Solution
Here we will use various identities and values of certain trigonometric ratios.
The identities we will use are:-
sin2θ=2sinθcosθ
cos2θ=cos2θ−sin2θ
(a−b)2=a2+b2−2ab
cos2θ+sin2θ=1
a2−b2=(a+b)(a−b)
tan(A+B)=1−tanAtanBtanA+tanB
sinAsin(60∘−A)sin(60∘+A)=41sin3A
Complete step-by-step answer:
Let us first consider part (i)
(i) 1−sinAcosA=tan(4π+2A)
Let us consider the left hand side we get:
LHS=1−sinAcosA………………………. (1)
Now we know that:-
sin2θ=2sinθcosθ
Hence, sinA=2sin2Acos2A
Also, we know that:-
cos2θ=cos2θ−sin2θ
Hence, cosA=cos22A−sin22A
Putting these values in equation 1 we get:-
LHS=1−2sin2Acos2Acos22A−sin22A
Now we know that:-
cos2θ+sin2θ=1
Hence,
cos22A+sin22A=1
Substituting this value in the above equation we get:-
LHS=cos22A+sin22A−2sin2Acos2Acos22A−sin22A
Now we know that:-
(a−b)2=a2+b2−2ab
Applying this identity in the denominator we get:-
LHS=(cos2A−sin2A)2cos22A−sin22A
Now applying the following identity in the numerator:-
a2−b2=(a+b)(a−b)
We get:-
LHS=(cos2A−sin2A)2(cos2A+sin2A)(cos2A−sin2A)
Cancelling the terms we get:-
LHS=(cos2A−sin2A)(cos2A+sin2A)
Now dividing the numerator and the denominator by cos2A we get:-
LHS=cos2Acos2A−cos2Asin2Acos2Acos2A+cos2Asin2A
Simplify it further we get:-
LHS=(1−(1)tan2A)(1+tan2A)
Now we know that:-
tan4π=1
Substituting this value above equation we get:-
LHS=(1−tan4πtan2A)(tan4π+tan2A)
Now we know that:-
tan(A+B)=1−tanAtanBtanA+tanB
Hence, applying this identity we get:-
LHS=tan(4π+2A)
Also, RHS=tan(4π+2A)
Therefore, LHS=RHS
Hence proved.
(ii) sin20∘sin40∘sin60∘sin80∘=163
Let us consider the left hand side:-
LHS=sin20∘sin40∘sin60∘sin80∘
⇒LHS=sin60∘[sin20∘sin40∘sin80∘]
Now we know that:-
sin60∘=23
sin40∘=sin(60∘−20∘)
sin80∘=sin(60∘+20∘)
Hence substituting these values we get:-
LHS=23[sin20∘sin(60∘−20∘)sin(60∘+20∘)]
Now we know that:-
sinAsin(60∘−A)sin(60∘+A)=41sin3A
Applying this identity in above equation we get:-
LHS=23[41sin3(20∘)]
Simplifying it further we get:-
LHS=83[sin60∘]
We know that:-
sin60∘=23
Putting the value we get:-
LHS=83[23]
Simplifying it we get:-
LHS=163
Now, since RHS=163
Hence, LHS=RHS
Hence proved.
Note: In part (ii) students can also, use the following identities to solve 23[sin20∘sin(60∘−20∘)sin(60∘+20∘)]but it would be a bit lengthy and tedious as we would have to evaluate the value of sin20∘
The formulas are:-
sin(A−B)=sinAcosB−cosAsinB
sin(A+B)=sinAcosB+cosAsinB