Solveeit Logo

Question

Question: Prove that: (i) \[\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \...

Prove that:
(i) cosA1sinA=tan(π4+A2)\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)
(ii) sin20sin40sin60sin80=316\sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ } = \dfrac{3}{{16}}

Explanation

Solution

Here we will use various identities and values of certain trigonometric ratios.
The identities we will use are:-
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta
(ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1
a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)
tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
sinAsin(60A)sin(60+A)=14sin3A\sin A\sin \left( {{{60}^ \circ } - A} \right)\sin \left( {{{60}^ \circ } + A} \right) = \dfrac{1}{4}\sin 3A

Complete step-by-step answer:
Let us first consider part (i)
(i) cosA1sinA=tan(π4+A2)\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)
Let us consider the left hand side we get:
LHS=cosA1sinALHS = \dfrac{{\cos A}}{{1 - \sin A}}………………………. (1)
Now we know that:-
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
Hence, sinA=2sinA2cosA2\sin A = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}
Also, we know that:-
cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta
Hence, cosA=cos2A2sin2A2\cos A = {\cos ^2}\dfrac{A}{2} - {\sin ^2}\dfrac{A}{2}
Putting these values in equation 1 we get:-
LHS=cos2A2sin2A212sinA2cosA2LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{1 - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}
Now we know that:-
cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1
Hence,
cos2A2+sin2A2=1{\cos ^2}\dfrac{A}{2} + {\sin ^2}\dfrac{A}{2} = 1
Substituting this value in the above equation we get:-
LHS=cos2A2sin2A2cos2A2+sin2A22sinA2cosA2LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{{{\cos }^2}\dfrac{A}{2} + {{\sin }^2}\dfrac{A}{2} - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}
Now we know that:-
(ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
Applying this identity in the denominator we get:-
LHS=cos2A2sin2A2(cosA2sinA2)2LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}^2}}}
Now applying the following identity in the numerator:-
a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)
We get:-
LHS=(cosA2+sinA2)(cosA2sinA2)(cosA2sinA2)2LHS = \dfrac{{\left( {\cos \dfrac{A}{2} + \sin \dfrac{A}{2}} \right)\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}}{{{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}^2}}}
Cancelling the terms we get:-
LHS=(cosA2+sinA2)(cosA2sinA2)LHS = \dfrac{{\left( {\cos \dfrac{A}{2} + \sin \dfrac{A}{2}} \right)}}{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}}
Now dividing the numerator and the denominator by cosA2\cos \dfrac{A}{2} we get:-
LHS=(cosA2cosA2+sinA2cosA2)(cosA2cosA2sinA2cosA2)LHS = \dfrac{{\left( {\dfrac{{\cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} + \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} - \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}} \right)}}
Simplify it further we get:-
LHS=(1+tanA2)(1(1)tanA2)LHS = \dfrac{{\left( {1 + \tan \dfrac{A}{2}} \right)}}{{\left( {1 - \left( 1 \right)\tan \dfrac{A}{2}} \right)}}
Now we know that:-
tanπ4=1\tan \dfrac{\pi }{4} = 1
Substituting this value above equation we get:-
LHS=(tanπ4+tanA2)(1tanπ4tanA2)LHS = \dfrac{{\left( {\tan \dfrac{\pi }{4} + \tan \dfrac{A}{2}} \right)}}{{\left( {1 - \tan \dfrac{\pi }{4}\tan \dfrac{A}{2}} \right)}}
Now we know that:-
tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
Hence, applying this identity we get:-
LHS=tan(π4+A2)LHS = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)
Also, RHS=tan(π4+A2)RHS = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)
Therefore, LHS=RHSLHS = RHS
Hence proved.
(ii) sin20sin40sin60sin80=316\sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ } = \dfrac{3}{{16}}
Let us consider the left hand side:-
LHS=sin20sin40sin60sin80LHS = \sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ }
LHS=sin60[sin20sin40sin80]\Rightarrow LHS = \sin {60^ \circ }\left[ {\sin {{20}^ \circ }\sin {{40}^ \circ }\sin {{80}^ \circ }} \right]
Now we know that:-
sin60=32\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}
sin40=sin(6020)\sin {40^ \circ } = \sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)
sin80=sin(60+20)\sin {80^ \circ } = \sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)
Hence substituting these values we get:-
LHS=32[sin20sin(6020)sin(60+20)]LHS = \dfrac{{\sqrt 3 }}{2}\left[ {\sin {{20}^ \circ }\sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)} \right]
Now we know that:-
sinAsin(60A)sin(60+A)=14sin3A\sin A\sin \left( {{{60}^ \circ } - A} \right)\sin \left( {{{60}^ \circ } + A} \right) = \dfrac{1}{4}\sin 3A
Applying this identity in above equation we get:-
LHS=32[14sin3(20)]LHS = \dfrac{{\sqrt 3 }}{2}\left[ {\dfrac{1}{4}\sin 3\left( {{{20}^ \circ }} \right)} \right]
Simplifying it further we get:-
LHS=38[sin60]LHS = \dfrac{{\sqrt 3 }}{8}\left[ {\sin {{60}^ \circ }} \right]
We know that:-
sin60=32\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}
Putting the value we get:-
LHS=38[32]LHS = \dfrac{{\sqrt 3 }}{8}\left[ {\dfrac{{\sqrt 3 }}{2}} \right]
Simplifying it we get:-
LHS=316LHS = \dfrac{3}{{16}}
Now, since RHS=316RHS = \dfrac{3}{{16}}
Hence, LHS=RHSLHS = RHS
Hence proved.

Note: In part (ii) students can also, use the following identities to solve 32[sin20sin(6020)sin(60+20)]\dfrac{{\sqrt 3 }}{2}\left[ {\sin {{20}^ \circ }\sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)} \right]but it would be a bit lengthy and tedious as we would have to evaluate the value of sin20\sin {20^ \circ }
The formulas are:-
sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B
sin(A+B)=sinAcosB+cosAsinB\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B