Solveeit Logo

Question

Question: Prove that from any point \(P\left( a{{t}^{2}},2at \right)\) on the parabola \({{y}^{2}}=4ax\) , two...

Prove that from any point P(at2,2at)P\left( a{{t}^{2}},2at \right) on the parabola y2=4ax{{y}^{2}}=4ax , two normal can be drawn and their feet Q and R have the parameters satisfying the equationλ2+λt+2=0{{\lambda }^{2}}+\lambda t+2=0.

Explanation

Solution

Hint: In this question, we can use the equation of the normal to the given parabola in the parametric form is y+tx=2at+at3y+tx=2at+a{{t}^{3}}, where t is a parameter.

Complete step-by-step answer:
Let us assume that Q(aλ2,2aλ)Q\left( a{{\lambda }^{2}},2a\lambda \right) be a point on the parabola y2=4ax{{y}^{2}}=4ax

The equation of the normal to the given parabola in the parametric form is given byy+λx=2aλ+aλ3.........................(1)y+\lambda x=2a\lambda +a{{\lambda }^{3}}.........................(1) where λ\lambda is a parameter.
It passes through the pointP(at2,2at)P\left( a{{t}^{2}},2at \right), satisfying the equation (1) and we get
(2at)+λ(at2)=2aλ+aλ3(2at)+\lambda (a{{t}^{2}})=2a\lambda +a{{\lambda }^{3}}
Rearranging the terms, we get
2at+λat22aλaλ3=02at+\lambda a{{t}^{2}}-2a\lambda -a{{\lambda }^{3}}=0
Dividing both sides by a, we get
2t+λt22λλ3=02t+\lambda {{t}^{2}}-2\lambda -{{\lambda }^{3}}=0
Taking common terms λ\lambda from second and fourth terms and 2 form first and third terms, we get
2(tλ)+λ(t2λ2)=02\left( t-\lambda \right)+\lambda \left( {{t}^{2}}-{{\lambda }^{2}} \right)=0
Applying the formula a2b2=(a+b)(ab){{a}^{{2}}}-{{b}^{2}}=(a+b)(a-b) on the left side, we get
2(tλ)+λ(t+λ)(tλ)=02\left( t-\lambda \right)+\lambda \left( t+\lambda \right)\left( t-\lambda \right)=0
Taking common terms (tλ)(t-\lambda ) on the left side, we get
(tλ)[2+λ(t+λ)]=0\left( t-\lambda \right)\left[ 2+\lambda \left( t+\lambda \right) \right]=0
Therefore, (tλ)=0 or [2+λ(t+λ)]=0\left( t-\lambda \right)=0\text{ or }\left[ 2+\lambda \left( t+\lambda \right) \right]=0
t=λ or (λ2+tλ+2)=0\text{t=}\lambda \text{ or }\left( {{\lambda }^{2}}+t\lambda +2 \right)=0
But tλt\ne \lambda
(λ2+tλ+2)=0\left( {{\lambda }^{2}}+t\lambda +2 \right)=0
Hence, λ\lambda is the root of the equation (λ2+tλ+2)=0\left( {{\lambda }^{2}}+t\lambda +2 \right)=0
Therefore, the points Q and R have the parameters satisfying the equationλ2+λt+2=0{{\lambda }^{2}}+\lambda t+2=0.
Note: The equation λ2+λt+2=0{{\lambda }^{2}}+\lambda t+2=0 has real and distinct roots if t242>0at2>8a{{t}^{2}}-4\cdot 2>0\Rightarrow a{{t}^{2}}>8a. So, the abscissa of the point P must exceed 8a for two distinct normal.