Question
Mathematics Question on Trigonometric Identities
Prove that: 1−cotθtanθ+1−tanθcotθ=1+tanθ+cotθ
Step 1: Simplify 1−cotθtanθ
1−cotθtanθ=1−sinθcosθcosθsinθ=sinθsinθ−cosθcosθsinθ=cosθ(sinθ−cosθ)sin2θ.
Step 2: Simplify 1−tanθcotθ
1−tanθcotθ=1−cosθsinθsinθcosθ=cosθcosθ−sinθsinθcosθ=sinθ(cosθ−sinθ)cos2θ.
Step 3: Add the two expressions
1−cotθtanθ+1−tanθcotθ=cosθ(sinθ−cosθ)sin2θ+sinθ(cosθ−sinθ)cos2θ.
Simplify:
=sinθcosθ(sinθ−cosθ)sin3θ−cos3θ+cos3θ−sin3θ.
Combine terms:
=1+tanθ+cotθ.
Solution
Step 1: Simplify 1−cotθtanθ
1−cotθtanθ=1−sinθcosθcosθsinθ=sinθsinθ−cosθcosθsinθ=cosθ(sinθ−cosθ)sin2θ.
Step 2: Simplify 1−tanθcotθ
1−tanθcotθ=1−cosθsinθsinθcosθ=cosθcosθ−sinθsinθcosθ=sinθ(cosθ−sinθ)cos2θ.
Step 3: Add the two expressions
1−cotθtanθ+1−tanθcotθ=cosθ(sinθ−cosθ)sin2θ+sinθ(cosθ−sinθ)cos2θ.
Simplify:
=sinθcosθ(sinθ−cosθ)sin3θ−cos3θ+cos3θ−sin3θ.
Combine terms:
=1+tanθ+cotθ.