Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

Prove that: tanθ1cotθ+cotθ1tanθ=1+tanθ+cotθ\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \tan \theta + \cot \theta

Answer

Step 1: Simplify tanθ1cotθ\frac{\tan \theta}{1 - \cot \theta}
tanθ1cotθ=sinθcosθ1cosθsinθ=sinθcosθsinθcosθsinθ=sin2θcosθ(sinθcosθ).\frac{\tan \theta}{1 - \cot \theta} = \frac{\frac{\sin \theta}{\cos \theta}}{1 - \frac{\cos \theta}{\sin \theta}} = \frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta - \cos \theta}{\sin \theta}}= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)}.
Step 2: Simplify cotθ1tanθ\frac{\cot \theta}{1 - \tan \theta}
cotθ1tanθ=cosθsinθ1sinθcosθ=cosθsinθcosθsinθcosθ=cos2θsinθ(cosθsinθ).\frac{\cot \theta}{1 - \tan \theta} = \frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\sin \theta}{\cos \theta}}= \frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta - \sin \theta}{\cos \theta}}= \frac{\cos^2 \theta}{\sin \theta (\cos \theta - \sin \theta)}.
Step 3: Add the two expressions
tanθ1cotθ+cotθ1tanθ=sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ).\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} + \frac{\cos^2\theta}{\sin \theta (\cos \theta - \sin \theta)}.
Simplify:
=sin3θcos3θ+cos3θsin3θsinθcosθ(sinθcosθ).= \frac{\sin^3 \theta - \cos^3 \theta + \cos^3 \theta - \sin^3 \theta}{\sin \theta \cos \theta (\sin \theta - \cos \theta)}.
Combine terms:
=1+tanθ+cotθ.= 1 + \tan \theta + \cot \theta.

Explanation

Solution

Step 1: Simplify tanθ1cotθ\frac{\tan \theta}{1 - \cot \theta}
tanθ1cotθ=sinθcosθ1cosθsinθ=sinθcosθsinθcosθsinθ=sin2θcosθ(sinθcosθ).\frac{\tan \theta}{1 - \cot \theta} = \frac{\frac{\sin \theta}{\cos \theta}}{1 - \frac{\cos \theta}{\sin \theta}} = \frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta - \cos \theta}{\sin \theta}}= \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)}.
Step 2: Simplify cotθ1tanθ\frac{\cot \theta}{1 - \tan \theta}
cotθ1tanθ=cosθsinθ1sinθcosθ=cosθsinθcosθsinθcosθ=cos2θsinθ(cosθsinθ).\frac{\cot \theta}{1 - \tan \theta} = \frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\sin \theta}{\cos \theta}}= \frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta - \sin \theta}{\cos \theta}}= \frac{\cos^2 \theta}{\sin \theta (\cos \theta - \sin \theta)}.
Step 3: Add the two expressions
tanθ1cotθ+cotθ1tanθ=sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ).\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \frac{\sin^2 \theta}{\cos \theta (\sin \theta - \cos \theta)} + \frac{\cos^2\theta}{\sin \theta (\cos \theta - \sin \theta)}.
Simplify:
=sin3θcos3θ+cos3θsin3θsinθcosθ(sinθcosθ).= \frac{\sin^3 \theta - \cos^3 \theta + \cos^3 \theta - \sin^3 \theta}{\sin \theta \cos \theta (\sin \theta - \cos \theta)}.
Combine terms:
=1+tanθ+cotθ.= 1 + \tan \theta + \cot \theta.