Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that, tan(4π−x)tan(4π−x)=(1−tanx1+tanx)2.
Answer
It is known that
tan(A+B)=1−tanAtanBtanA+tanB and ,
tan(A−B)=1+tanAtanBtanA−tanB
tan(4π−x)tan(4π+x)
=(1+tan4πtanxtan4π−tanx)(1−tan4πtanxtan4π+tanx)
=(1+tanx1−tanx)(1−tanx1+tanx)
=(1−tanx1+tanx)2
=R.H.S