Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that, tan(π4x)tan(π4x)=(1+tanx1tanx)2.\frac{tan(\frac{π}{4}-x)}{tan(\frac{π}{4}-x)}=(\frac{1+tan x}{1-tan x})^2.

Answer

It is known that

tan(A+B)=tanA+tanB1tanAtanBtan(A+B)=\frac{tanA+tanB}{1-tanA tanB} and ,

tan(AB)=tanAtanB1+tanAtanBtan(A-B)=\frac{tanA-tanB}{1+tanA tanB}

tan(π4+x)tan(π4x)\frac{tan(\frac{\pi}{4}+x)}{tan(\frac{\pi}{4}-x)}

=(tanπ4+tanx1tanπ4tanx)(tanπ4tanx1+tanπ4tanx)=\frac{(\frac{tan\frac{\pi}{4}+tan\,x}{1-tan\frac{\pi}{4}tan\,x})}{(\frac{tan\frac{\pi}{4}-tan\,x}{1+tan\frac{\pi}{4}\,tan\,x})}

=(1+tanx1tanx)(1tanx1+tanx)=\frac{(\frac{1+tan\,x}{1-tan\,x})}{(\frac{1-tan\,x}{1+tan\,x})}

=(1+tanx1tanx)2=(\frac{1+tan\,x}{1-tan\,x})^2

=R.H.S=R.H.S