Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that sinxsinycosx+cosy=tanxy2.\frac{sinx-siny}{cosx+cos y}=tan \frac{x-y}{2}.

Answer

It is known that

sinAsinB=2cos(A+B2)sin(AB2),cosA+cosB=2cos(A+B2)cos(AB2)sinA-sinB=2cos(\frac{A+B}{2})sin(\frac{A-B}{2}),cosA+cosB=2cos(\frac{A+B}{2})cos(\frac{A-B}{2})

L.H.S.=sinxsinycosx+cosy∴L.H.S. =\frac{sin\,x-sin\,y}{cos\,x+cos\,y}

=2cos(x+y2).sin(xy2)2cos(x+y2).cos(xy2)=\frac{2cos(\frac{x+y}{2}).sin(\frac{x-y}{2})}{2cos(\frac{x+y}{2}).cos(\frac{x-y}{2})}

=sin(xy2)cos(xy2)=\frac{sin(\frac{x-y}{2})}{cos(\frac{x-y}{2})}

=tan(xy2)=R.H.S.=tan(\frac{x-y}{2})=R.H.S.