Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that cosx+cosysinx−siny=tan2x−y.
Answer
It is known that
sinA−sinB=2cos(2A+B)sin(2A−B),cosA+cosB=2cos(2A+B)cos(2A−B)
∴L.H.S.=cosx+cosysinx−siny
=2cos(2x+y).cos(2x−y)2cos(2x+y).sin(2x−y)
=cos(2x−y)sin(2x−y)
=tan(2x−y)=R.H.S.