Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that sin2x+cos2xsinx−sin3x=2sinx.
Answer
It is known that
sinA−sinB=2cos(2A+B)sin(2A−B),cos2A−sin2A=cos2A
∴L.H.S.=sin2x−cos2xsinx−sin3y
=−cos2x2cos(2x+3x)sin(2x−3x)
−cos2x2cos2xsin(−x)
=−2(−sinx)
=2.sinx=R.H.S.