Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that sinxsin3xsin2x+cos2x=2sinx\frac{sinx-sin3x}{sin^2x+cos^2x}=2\,sin\,x.

Answer

It is known that

sinAsinB=2cos(A+B2)sin(AB2),cos2Asin2A=cos2AsinA-sinB=2cos(\frac{A+B}{2})sin(\frac{A-B}{2}),cos^2A-sin^2A=cos2A

L.H.S.=sinxsin3ysin2xcos2x∴L.H.S. =\frac{sin\,x-sin\,3y}{sin^2\,x-cos^2\,x}

=2cos(x+3x2)sin(x3x2)cos2x=\frac{2cos(\frac{x+3x}{2})sin(\frac{x-3x}{2})}{-cos2x}

2cos2xsin(x)cos2x\frac{2cos\,2x\,sin(-x)}{-cos2x}

=2(sinx)=-2(-sin\,x)

=2.sinx=R.H.S.=2\\.sin\,x=R.H.S.