Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that cosx+cos3xsinx−sin3x=tan2x.
Answer
It is known that
sinA−sinB=2cos(2A+B)cos(2A−B),cosA+cosB=2cos(2A+B)cos(2A−B)
L.H.S=cosx+cos3xsinx−sin3x
=2cos(2x+3x).cos(25x−3x)−2sin(2x+3x).cos(2x−3x)
=cos2xsin2x
=tan2x
=R.H.S.