Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that sinxsin3xcosx+cos3x=tan2x.\frac{sinx-sin3x}{cosx+cos 3x}=tan 2x.

Answer

It is known that

sinAsinB=2cos(A+B2)cos(AB2),cosA+cosB=2cos(A+B2)cos(AB2)sinA-sinB=2cos(\frac{A+B}{2})cos(\frac{A-B}{2}),cosA+cosB=2cos(\frac{A+B}{2})cos(\frac{A-B}{2})

L.H.S=sinxsin3xcosx+cos3xL.H.S=\frac{sinx-sin3x}{cosx+cos 3x}

=2sin(x+3x2).cos(x3x2)2cos(x+3x2).cos(5x3x2)=\frac{-2\,sin(\frac{x+3x}{2}).cos(\frac{x-3x}{2})}{2cos(\frac{x+3x}{2}).cos(\frac{5x-3x}{2})}

=sin2xcos2x=\frac{sin2x}{cos2x}

=tan2x=tan2x

=R.H.S.=R.H.S.