Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that sin7x+cos3xsin5x+sin3x=tan4x
Answer
It is known that
sinA−sinB=−2sin(2A+B)cos(2A−B),cosA−cosB=2cos(2A+B)sin(2A−B)
∴L.H.S=sin7x+cos3xsin5x+sin3x
=2cos(25x+3x).cos(25x−3x)−2sin(25x+3x).cos(25x−3x)
=2cos4x.cos7x−2sin4x.cos2x
=−cos4xsin4x
=tan4x=R.H.S