Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that sin5x+sin3xsin7x+cos3x=tan4x\frac{sin5x+sin3x}{sin\,7x+cos3x}=tan\,4x

Answer

It is known that

sinAsinB=2sin(A+B2)cos(AB2),cosAcosB=2cos(A+B2)sin(AB2)sinA-sinB=-2sin(\frac{A+B}{2})cos(\frac{A-B}{2}),cosA-cosB=2cos(\frac{A+B}{2})sin(\frac{A-B}{2})

L.H.S=sin5x+sin3xsin7x+cos3x∴ L.H.S=\frac{sin5x+sin3x}{sin\,7x+cos3x}

=2sin(5x+3x2).cos(5x3x2)2cos(5x+3x2).cos(5x3x2)=\frac{-2\,sin(\frac{5x+3x}{2}).cos(\frac{5x-3x}{2})}{2cos(\frac{5x+3x}{2}).cos(\frac{5x-3x}{2})}

=2sin4x.cos2x2cos4x.cos7x=\frac{-2\,sin4x.cos2x}{2cos4x.cos7x}

=sin4xcos4x=-\frac{sin4x}{cos4x}

=tan4x=R.H.S=tan\,4x=R.H.S