Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that (sin7x+sin5x)+(sin9x+sin3x)cos7x+cos5x)+(cos9x+cos3x)=tan6x.\frac{(sin 7x+sin 5x)+(sin 9x+sin3x)}{cos 7x+cos5x)+(cos9x+cos3x)}=tan\,6x.

Answer

It is known that

sinA+sinB=2sin(A+B2).cos(AB2),cosA+cosB=2cos(A+B2).cos(AB2)sinA+sin B=2sin(\frac{A+B}{2}).cos(\frac{A-B}{2}),cosA+cosB=2cos(\frac{A+B}{2}).cos(\frac{A-B}{2})

L.H.S. = (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)\frac{(sin 7x+sin 5x)+(sin 9x+sin3x)}{(cos 7x+cos5x)+(cos9x+cos3x)}

[2sin(7x+5x2).cos(7x5x2)]+[2sin(9x+3x2.cos(9x3x2)][2cos(7x+5x2.cos(7x5x2)]+[2cos(9x+3x2).cos(9x3x2)]\frac{[2sin(\frac{7x+5x}{2}).cos(\frac{7x-5x}{2})]+[2sin(\frac{9x+3x}{2}.cos(\frac{9x-3x}{2})]}{[2cos(\frac{7x+5x}{2}.cos(\frac{7x-5x}{2})]+[2cos(\frac{9x+3x}{2}).cos(\frac{9x-3x}{2})]}

=[2sin6x.cosx]+[2sin6x.cos3x][2cos6x.cosx]+[2cos6x.cos3x]=\frac{[2sin6x.cosx]+[2sin6x.cos3x]}{[2cos6x.cosx]+[2cos6x.cos3x]}

=2sin6x[cosx+cos3x]2cos6x[cosx+cos3x]=\frac{2sin6x[cosx+cos3x]}{2cos6x[cosx+cos3x]}

=tan6x= tan\, 6x

=R.H.S.= R.H.S.