Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that cos7x+cos5x)+(cos9x+cos3x)(sin7x+sin5x)+(sin9x+sin3x)=tan6x.
Answer
It is known that
sinA+sinB=2sin(2A+B).cos(2A−B),cosA+cosB=2cos(2A+B).cos(2A−B)
L.H.S. = (cos7x+cos5x)+(cos9x+cos3x)(sin7x+sin5x)+(sin9x+sin3x)
[2cos(27x+5x.cos(27x−5x)]+[2cos(29x+3x).cos(29x−3x)][2sin(27x+5x).cos(27x−5x)]+[2sin(29x+3x.cos(29x−3x)]
=[2cos6x.cosx]+[2cos6x.cos3x][2sin6x.cosx]+[2sin6x.cos3x]
=2cos6x[cosx+cos3x]2sin6x[cosx+cos3x]
=tan6x
=R.H.S.