Question
Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles
Prove that sin4x+sin3x+sin2xcos4x+cos3x+cos2x=cot3x.
Answer
It is known that
L.H.S=sin4x+sin3x+sin2xcos4x+cos3x+cos2x
=(sin4x+sin2x)+sin3x(cos4x+cos2x)+cos3x
=2sin(24x+2x)cos(22x−2x)+sin3x2cos(24x+2x)cos(24x−2x)+cos3x
[cosA−cosB=2cos(2A+B)cos(2A−B),sinA−sinB=2sin(2A+B)cos(2A−B)]
=2sin3xcosx+sin3x2cos3xcosx+cos3x
=sin3x(2cosx+1)cos3x(2cos+1)
=cot3x=R.H.S.