Solveeit Logo

Question

Mathematics Question on Trigonometric Functions of Sum and Difference of Two Angles

Prove that. cos(π+x)cos(x)sin(πx)cos(π2+x)=cot2x\frac{cos(π+x)cos(-x)}{sin(π-x)cos(\frac{π}{2}+x)}=cot^2x

Answer

L.H.S=cos(π+x)cos(x)sin(πx)cos(π2+x)L.H.S=\frac{cos({\pi}+x)cos(-x)}{sin({\pi}-x)cos(\frac{\pi}{2}+x)}

=[cosx][cosx](sinx)(sinx)=\frac{[-cos\,x][cos\,x]}{(sin\,x)(-sin\,x)}

cos2xsin2x\frac{-cos^2x}{-sin^2x}

=cot2x=cot^2x

=R.H.S.=R.H.S.