Solveeit Logo

Question

Question: Prove that for any two vectors \(\overrightarrow a \)and \(\overrightarrow b \)we always have, \(|\o...

Prove that for any two vectors a\overrightarrow a and b\overrightarrow b we always have, a+ba+b|\overrightarrow a + \overrightarrow b | \leqslant |\overrightarrow a | + |\overrightarrow b | (triangle inequality)

Explanation

Solution

The question can be started by taking the term a+b|\overrightarrow a + \overrightarrow b | and squaring it. Since, we know that the identity that the square of modulus of a vector is equal to the dot product of it with itself we can use this identity for solving the question.

Complete step-by-step answer:
We are given that a\overrightarrow a and b\overrightarrow b are two vectors of triangle and also we need to prove that a+ba+b|\overrightarrow a + \overrightarrow b | \leqslant |\overrightarrow a | + |\overrightarrow b | is true for any value of these two vectors.
We will start of by understanding what this triangle inequality means.
Triangle inequality says that the sum of two sides of a triangle is always greater than the third side. Here the term a+b|\overrightarrow a + \overrightarrow b | is referred to as the third side and a+b|\overrightarrow a | + |\overrightarrow b |are the sum of the rest of the two sides.
The question can be started by taking the term a+b|\overrightarrow a + \overrightarrow b | and squaring it. We get,
a+b2=(a+b).(a+b)|\overrightarrow a + \overrightarrow b {|^2} = (\overrightarrow a + \overrightarrow b ).(\overrightarrow a + \overrightarrow b )……….. Here, the property used is c2=c.c|\overrightarrow c {|^2} = \overrightarrow {c.} \overrightarrow c
a+b2=(a+b).(a+b)|\overrightarrow a + \overrightarrow b {|^2} = (\overrightarrow a + \overrightarrow b ).(\overrightarrow a + \overrightarrow b )
a+b2=a.a+a.b+b.a+b.b.............(1)|\overrightarrow a + \overrightarrow b {|^2} = \overrightarrow a .\overrightarrow a + \overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow a + \overrightarrow b .\overrightarrow b .............(1)
Since, dot product of vectors are commutative which meansa.b=b.a\overrightarrow a .\overrightarrow b = \overrightarrow b .\overrightarrow a . We will use it in equation (1),
a+b2=a.a+2a.b+b.b.|\overrightarrow a + \overrightarrow b {|^2} = \overrightarrow a .\overrightarrow a + 2\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow b .
Now, we have a dot product of two vectors as a multiplication of their magnitudes and cosine of angle between the vectors. We get,
a+b2=a2+2a.b+b2|\overrightarrow a + \overrightarrow b {|^2} = |\overrightarrow a {|^2} + 2\overrightarrow a .\overrightarrow b + |\overrightarrow b {|^2}……….here, the property used is a.a=a2\overrightarrow a .\overrightarrow a = |\overrightarrow a {|^2}
a+b2=a2+2abCosθ+b2|\overrightarrow a + \overrightarrow b {|^2} = |\overrightarrow a {|^2} + 2|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta + |\overrightarrow b {|^2}
Where, θ\theta is the angle between the vectors a\overrightarrow a andb\overrightarrow b .
Now, we know that
Cosθ1\operatorname{Cos} \theta \leqslant 1
Multiplying 2ab2|\overrightarrow a ||\overrightarrow b | both sides we get,
2abCosθ2ab2|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta \leqslant 2|\overrightarrow a ||\overrightarrow b |
Adding a2+b2|\overrightarrow a {|^2} + |\overrightarrow b {|^2}on both the sides we get,
2abCosθ+a2+b22ab+a2+b22|\overrightarrow a ||\overrightarrow b |\operatorname{Cos} \theta + |\overrightarrow a {|^2} + |\overrightarrow b {|^2} \leqslant 2|\overrightarrow a ||\overrightarrow b | + |\overrightarrow a {|^2} + |\overrightarrow b {|^2}
Forming the perfect squares we have,
a+b2(a+b)2|\overrightarrow a + \overrightarrow b {|^2} \leqslant {(|\overrightarrow a | + |\overrightarrow b |)^2}
Taking square root both the sides we get,
a+b(a+b)|\overrightarrow a + \overrightarrow b | \leqslant (|\overrightarrow a | + |\overrightarrow b |)
Hence proved.

Note: The dot products in vector are commutative but this property shouldn’t be applied when we take cross products. Since, the cross product of vectors are not commutative.