Solveeit Logo

Question

Question: Prove that for any two sets A and B \(A=\left( A\bigcap B \right)\bigcup \left( A-B \right)\)...

Prove that for any two sets A and B A=(AB)(AB)A=\left( A\bigcap B \right)\bigcup \left( A-B \right)

Explanation

Solution

Hint: Use the fact that AB=ABcA-B=A\bigcap {{B}^{c}} and apply distributive law of union over the intersection of sets, i.e. A(BC)=(AB)(AC)A\bigcup \left( B\bigcap C \right)=\left( A\bigcup B \right)\bigcap \left( A\bigcup C \right). Use BBc=UB\bigcup {{B}^{c}}=U, where U is the universal set and use the fact that if ABA\subset B then AB=AA\bigcap B=A. Simplify the above expression using these properties of intersection and union of sets.

Complete step-by-step solution -

We know that AB=ABcA-B=A\bigcap {{B}^{c}}
Hence we have (AB)(AB)=(AB)(ABc)\left( A\bigcap B \right)\bigcup \left( A-B \right)=\left( A\bigcap B \right)\bigcup \left( A\bigcap {{B}^{c}} \right)
Let C=ABC=A\bigcap B
We have
(AB)(AB)=C(ABc)\left( A\bigcap B \right)\bigcup \left( A-B \right)=C\bigcup \left( A\bigcap {{B}^{c}} \right)
We know that union distributes over the intersection of two sets. Hence we have
C(ABc)=(CA)(CBc)C\bigcup \left( A\bigcap {{B}^{c}} \right)=\left( C\bigcup A \right)\bigcap \left( C\bigcup {{B}^{c}} \right)
Now CA=(AB)AC\bigcup A=\left( A\bigcap B \right)\bigcup A
We know that the union of two sets is associative, i.e. AB=BAA\bigcup B=B\bigcup A
Hence we have
CA=A(AB)C\bigcup A=A\bigcup \left( A\bigcap B \right)
Using the distributive law of union over the intersection of two sets, we have
CA=(AA)(AB)C\bigcup A=\left( A\bigcup A \right)\bigcap (A\bigcup B)
Now we know that AA=AA\bigcup A=A (idempotent law).
Hence we have,
CA=A(AB)C\bigcup A=A\bigcap \left( A\bigcup B \right)
Since AAB,BUA\subset A\bigcup B,\forall B\subset U and AB=AA\bigcap B=A if ABA\subset B, we have
CA=AC\bigcup A=A
Also, CBc=(AB)BcC\bigcup {{B}^{c}}=\left( A\bigcap B \right)\bigcup {{B}^{c}}
Using commutative law of union of sets, we have
CBc=Bc(AB)C\bigcup {{B}^{c}}={{B}^{c}}\bigcup \left( A\bigcap B \right)
Using the distributive law of union over the intersection of sets, we have
CBc=(BcA)(BcB)C\bigcup {{B}^{c}}=\left( {{B}^{c}}\bigcup A \right)\bigcap \left( {{B}^{c}}\bigcup B \right)
We know that BcB=U{{B}^{c}}\bigcup B=U
Hence we have
CBc=(BcA)UC\bigcup {{B}^{c}}=\left( {{B}^{c}}\bigcup A \right)\bigcap U
Since BcAU{{B}^{c}}\bigcup A\subset U, we have
CBc=BcAC\bigcup {{B}^{c}}={{B}^{c}}\bigcup A
Hence we have
(AB)(AB)=(CA)(CBc)=A(BcA)\left( A\bigcap B \right)\bigcup \left( A-B \right)=\left( C\bigcup A \right)\bigcap \left( C\bigcup {{B}^{c}} \right)=A\bigcap \left( {{B}^{c}}\bigcup A \right)
We know that AAB,BUA\subset A\bigcup B,\forall B\subset U
Hence we have
ABcAA\subset {{B}^{c}}\bigcup A
Hence (AB)(AB)=A\left( A\bigcap B \right)\bigcup \left( A-B \right)=A
Q.E.D

Note: We can also verify the above result using Venn diagrams
Diagram for ABA\bigcap B:

Diagram for A-B:

Diagram for (AB)(AB)\left( A\bigcap B \right)\bigcup \left( A-B \right):

Hence A=(AB)(AB)A=\left( A\bigcap B \right)\bigcup \left( A-B \right)