Solveeit Logo

Question

Question: Prove that for any complex number \[z\], \[|\operatorname{Re} (z)| + |\operatorname{Im} (z)| \leq...

Prove that for any complex number zz,
Re(z)+Im(z)z2|\operatorname{Re} (z)| + |\operatorname{Im} (z)| \leqslant |z|\sqrt 2
or x+y2x+iy|x| + |y| \leqslant \sqrt 2 |x + iy|

Explanation

Solution

Hint:- Re(z)\operatorname{Re} (z)is the real part of zz and Im(z)\operatorname{Im} (z) is the imaginary part of zz.

If zz is any complex number then it can be written as,
z=x+iy=reiθ=r(cosθ+isinθ)\Rightarrow z = x + iy = r{e^{i\theta }} = r(\cos \theta + i\sin \theta ) (1)
As we know that Re(z)=x,Im(z)=y and z=r\operatorname{Re} (z) = x,\operatorname{Im} (z) = y{\text{ and }}|z| = r
Using equation 1 we can write,
x+y=r[cosθ+sinθ]\Rightarrow |x| + |y| = r[|\cos \theta | + |\sin \theta |] (2)
Now, to prove the given relation.
On squaring equation 2 we get,
[x+y]2=r2[cos2θ+sin2θ+2sinθcosθ]\Rightarrow {[|x| + |y|]^2} = {r^2}[{\cos ^2}\theta + {\sin ^2}\theta + |2\sin \theta \cos \theta |]
As we know that, cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1.
So, solving above equation it becomes,
[x+y]2=r2[1+2sinθcosθ]\Rightarrow {[|x| + |y|]^2} = {r^2}[1 + |2\sin \theta \cos \theta |]
As we know that according to trigonometric identities,
2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta
So, on solving the above equation. It becomes,
[x+y]2=r2[1+sin2θ]\Rightarrow {[|x| + |y|]^2} = {r^2}[1 + |\sin 2\theta |]
Now, as we know that, (3)
|sinx1\Rightarrow {\text{|}}\sin x| \leqslant 1
So, the maximum value of sin2θ=1{\text{sin2}}\theta = 1.
Now , equation 3 becomes,
[x+y]22r2\Rightarrow {[|x| + |y|]^2} \leqslant 2{r^2}
Now, taking square roots to both sides of the above equation. We get,
x+y2r\Rightarrow |x| + |y| \leqslant \sqrt 2 r
So, above equation can be written as,
Re(z)+Im(z)2z\Rightarrow |\operatorname{Re} (z)| + |\operatorname{Im} (z)| \leqslant \sqrt 2 |z|
Using equation 1 above equation can be written as,
x+y2x+iy\Rightarrow |x| + |y| \leqslant \sqrt 2 |x + iy|
Hence, Re(z)+Im(z)z2 |\operatorname{Re} (z)| + |\operatorname{Im} (z)| \leqslant |z|\sqrt 2 {\text{ }}or x+y2x+iy|x| + |y| \leqslant \sqrt 2 |x + iy|

Note:- Whenever you came up with this type of problem then easiest and efficient way
is to write complex number zz, in polar form (z=reiθ)\left( {z = r{e^{i\theta }}} \right), in terms of sinθ{\text{sin}}\theta and \cos \theta $$$$\left( {z = r(\cos \theta + i\sin \theta )} \right), or in terms of x and y (z=x+iy)\left( {z = x + iy} \right) as per required result to be proved.