Solveeit Logo

Question

Question: Prove that \[\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, ...

Prove that tanθ1cotθ+cotθ1tanθ=1+secθcosecθ\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,1\, + \,\sec \,\theta \,\cos ec\,\theta .

Explanation

Solution

Split the equation as LHS and RHS to prove that the given equation is true. Initially solve the left-hand side equation. By solving the left-hand side, at the final stage the assumed Right-hand side will be the answer of the solved LHS.

Useful Formula:
Use the trigonometric formula for tanθ\tan \,\theta and cotθ\cot \,\theta , that is tanθ=sinθcosθ\tan \,\theta \, = \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }} and cotθ=cosθsinθ\cot \,\theta \, = \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}.
Another simplification of tanθ\tan \,\theta is tanθ=1cotθ\tan \,\theta \, = \,\dfrac{1}{{\cot \,\theta }} and the simplification of cotθ=1tanθ\cot \,\theta \, = \,\dfrac{1}{{\tan \,\theta }}. The formula for the reciprocal of sinθ\sin \,\theta and cosθ\cos \,\theta is 1sinθ=cosecθ\dfrac{1}{{\sin \,\theta }}\, = \,\cos ec\,\theta and 1cosθ=secθ\dfrac{1}{{\cos \,\theta }}\, = \,\sec \,\theta .

Complete step by step solution:
Given that tanθ1cotθ+cotθ1tanθ=1+secθcosecθ\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,1\, + \,\sec \,\theta \,\cos ec\,\theta and We want to prove it.
To prove the given equation is correct, we initially split the equation by two parts as left hand side and right-hand side.
LHS =tanθ1cotθ+cotθ1tanθ = \,\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}
RHS =1+secθcosecθ= 1\, + \,\sec \,\theta \,\cos ec\,\theta

We want to prove that LHS = RHS.
Initially solve the Left-hand side assumed part equation:
LHS =tanθ1cotθ+cotθ1tanθ = \dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\,
By using the formula tanθ=sinθcosθ\tan \,\theta \, = \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}, substitute the formula in the above equation:
tanθ1cotθ+cotθ1tanθ=sinθcosθ1cotθ+cotθ1sinθcosθ\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}

As like tanθ\tan \,\theta , substitute the value of cotθ\cot \,\theta as cotθ=cosθsinθ\cot \,\theta \, = \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}
tanθ1cotθ+cotθ1tanθ=sinθcosθ1cosθsinθ+cosθsinθ1sinθcosθ\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{1\, - \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}\, + \,\dfrac{{\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}{{1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}
Taking LCM to 1cosθsinθ1\, - \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}\,,
tanθ1cotθ+cotθ1tanθ=sinθcosθsinθcosθsinθ+cosθsinθ1sinθcosθ\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{\dfrac{{\sin \,\theta \, - \,\cos \,\theta }}{{\sin \,\theta }}}}\, + \,\dfrac{{\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}{{1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}
Similar that, take LCM to 1sinθcosθ1\, - \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}
tanθ1cotθ+cotθ1tanθ=sinθcosθsinθcosθsinθ+cosθsinθcosθsinθcosθ\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\dfrac{{\sin \,\theta }}{{\cos \,\theta }}}}{{\dfrac{{\sin \,\theta \, - \,\cos \,\theta }}{{\sin \,\theta }}}}\, + \,\dfrac{{\dfrac{{\cos \,\theta }}{{\sin \,\theta }}}}{{\dfrac{{\cos \,\theta \, - \,\sin \,\theta }}{{\cos \,\theta }}}}

The denominator of sinθcosθsinθ\dfrac{{\sin \,\theta \, - \,\cos \,\theta }}{{\sin \,\theta }} becomes the reciprocal of the denominator, when it comes to nominator:
tanθ1cotθ+cotθ1tanθ=sinθcosθ×sinθsinθcosθ+cosθsinθ×cosθcosθsinθ\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{{\sin \,\theta }}{{\cos \,\theta }}\, \times \,\dfrac{{\sin \,\theta }}{{\sin \,\theta \, - \,\cos \,\theta }}\, + \,\dfrac{{\cos \,\theta }}{{\sin \,\theta }}\, \times \,\dfrac{{\cos \,\theta }}{{\cos \,\theta \, - \,\sin \,\theta }}
To simplify, multiply the equation as possible,
tanθ1cotθ+cotθ1tanθ=sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ)\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\,\dfrac{{{{\sin }^2}\theta }}{{\cos \,\theta (\sin \,\theta \, - \,\cos \,\theta )}}\, + \,\,\,\dfrac{{\cos {\,^2}\theta }}{{\sin \,\theta (\cos \,\theta \, - \,\sin \,\theta )}}
Change the cosθsinθ\cos \,\theta \, - \,\sin \,\theta into sinθcosθ\sin \,\theta \, - \,\cos \,\theta by adding the negative sign in it:

The equation becomes as follows:
tanθ1cotθ+cotθ1tanθ=sin2θcosθ(sinθcosθ)cos2θsinθ(sinθcosθ)\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\,\dfrac{{{{\sin }^2}\theta }}{{\cos \,\theta (\sin \,\theta \, - \,\cos \,\theta )}}\, - \,\dfrac{{\cos {\,^2}\theta }}{{\sin \,\theta (\sin \,\theta \, - \,\cos \,\theta )}}
By taking out the common parts from the equation as follows:
tanθ1cotθ+cotθ1tanθ=1sinθcosθ(sin2θcosθcos2θsinθ)\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,(\dfrac{{{{\sin }^2}\theta }}{{\cos \,\theta }}\, - \,\dfrac{{\cos {\,^2}\theta }}{{\sin \,\theta }})
Take the LCM to the above equation except common equation:
The equation should be as follows:
tanθ1cotθ+cotθ1tanθ=1sinθcosθ(sin3θcos3θcosθsinθ)\dfrac{{\tan \,\theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,(\dfrac{{{{\sin }^3}\theta \, - \,\,{{\cos }^3}\,\theta }}{{\cos \,\theta \,\sin \,\theta }})
Substitute the formula for sin3θcos3θ{\sin ^3}\theta \, - \,{\cos ^3}\theta to the above equation.

The formula is sin3θcos3θ=(sinθcosθ)(sin2θ+cos2θ+sinθcosθ)cosθsinθ{\sin ^3}\theta \, - \,{\cos ^3}\theta \, = \,\dfrac{{(\sin \theta \, - \,\cos \,\theta )({{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}:
tanθ1cotθ+cotθ1tanθ=1sinθcosθ(sinθcosθ)(sin2θ+cos2θ+sinθcosθ)cosθsinθ\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,\dfrac{{(\sin \theta \, - \,\cos \,\theta )({{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}
Substitute the value of sin2θ+cos2θ{\sin ^2}\theta + {\cos ^2}\theta as 11 in above equation:
tanθ1cotθ+cotθ1tanθ=1sinθcosθ(sinθcosθ)(1+sinθcosθ)cosθsinθ\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \,\dfrac{1}{{\sin \,\theta \, - \,\cos \,\theta }}\,\dfrac{{(\sin \theta \, - \,\cos \,\theta )(1 + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}
Now cancel the common parts from both numerator and denominator, then the equation become as follows:
tanθ1cotθ+cotθ1tanθ=(1+sinθcosθ)cosθsinθ\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{{(1 + \sin \theta \cos \theta )}}{{\cos \theta \,\sin \theta }}

Splitting the above equation in two parts:
tanθ1cotθ+cotθ1tanθ=1cosθsinθ+sinθcosθcosθsinθ\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{1}{{\cos \,\theta \sin \,\theta }} + \dfrac{{\sin \theta \cos \theta }}{{\cos \theta \,\sin \theta }}
Cancel the common parts from both numerator and denominator in above equation as follows:
tanθ1cotθ+cotθ1tanθ=1cosθsinθ+1\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{1}{{\cos \,\theta \sin \,\theta }}\, + \,1

Splitting the right-hand side equation in again two parts as follows:
tanθ1cotθ+cotθ1tanθ=1cosθ1sinθ+1\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }}\, = \dfrac{1}{{\cos \,\theta }}\,\dfrac{1}{{\sin \,\theta }}\, + \,1
Now substitute the value of reciprocal value of cosθ\cos \theta and sinθ\sin \theta in above equation as follows:

Since 1sinθ=cosecθ1cosθ=secθ\dfrac{1}{{\sin \,\theta }}\, = \,\cos ec\,\theta \,\,\dfrac{1}{{\cos \,\theta }}\, = \,\sec \,\theta in the equation:
tanθ1cotθ+cotθ1tanθ=secθcosecθ+1\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }} = \sec \theta \cos ec\theta \, + \,1
By simplifying the Left-hand side, we obtain the Right-hand side.

We proved that the given equation is correct.
tanθ1cotθ+cotθ1tanθ=cosecθsecθ+1\dfrac{{\tan \theta }}{{1\, - \,\cot \,\theta }}\, + \,\dfrac{{\cot \,\theta }}{{1\, - \,\tan \,\theta }} = \cos ec\,\theta \sec \,\theta \, + \,1 is proved.

Note: Only take the LCM to the applicable places and use the formula only in needed places. Be aware that changing the equation like (cosθsinθ)(\cos \theta \, - \,\sin \theta )will become (sinθcosθ) - \,(\sin \theta \, - \,\cos \,\theta ). Don’t forget to put the negative sign.