Question
Question: Prove that \(\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{1+\sin A}{\cos A}\)...
Prove that
tanA−secA+1tanA+secA−1=cosA1+sinA
Solution
We solve this question by first considering the LHS of the given equation and then we consider the trigonometric formulas tanA=cosAsinA and secA=cosA1. Then we use them to simplify it to write the equation in terms of sine and cosines. Then we multiply the numerator and denominator of the equation with sinA+1−cosA. Then we consider the formulas, (a−b)(a+b)=a2−b2 and (a+b)2=a2+b2+2ab. Using them we can simplify the equation. Then we use the formula (a−b)2=a2+b2−2ab to expand the terms in the equation. Then we use the trigonometric identity sin2A+cos2A=1 and simplify the equation. Then we factorise the numerator and denominator and cancel the terms that are common in both numerator and denominator to find the answer.
Complete step-by-step solution
We are asked to prove that tanA−secA+1tanA+secA−1=cosA1+sinA.
So, now let us consider the left-hand side of the above expression.
⇒tanA−secA+1tanA+secA−1
Now let us use the formula for trigonometric identities.
tanA=cosAsinA
secA=cosA1
Using them we can write the above expression as,
⇒tanA−secA+1tanA+secA−1=cosAsinA−cosA1+1cosAsinA+cosA1−1
⇒tanA−secA+1tanA+secA−1=cosAsinA−1+cosAcosAsinA+1−cosA
⇒tanA−secA+1tanA+secA−1=sinA−1+cosAsinA+1−cosA................(1)
Now, let us consider the expression sinA−1+cosAsinA+1−cosA.
We can write it as,
⇒sinA−(1−cosA)sinA+1−cosA
Now let us multiply the numerator and the denominator with sinA+1−cosA.
⇒sinA−(1−cosA)sinA+1−cosA×sinA+(1−cosA)sinA+1−cosA⇒(sinA−(1−cosA))×(sinA+(1−cosA))(sinA+(1−cosA))2
Now let us consider the formulas,
(a−b)(a+b)=a2−b2(a+b)2=a2+b2+2ab
Using it we can convert the denominator and numerator and write it as,
⇒sin2A−(1−cosA)2sin2A+(1−cosA)2+2sinA(1−cosA)
Now let us consider the formula,
(a−b)2=a2+b2−2ab
Using it we can write the above equation as,
⇒sin2A−(1+cos2A−2cosA)sin2A+(1+cos2A−2cosA)+2sinA−2sinAcosA⇒sin2A−1−cos2A+2cosAsin2A+1+cos2A−2cosA+2sinA−2sinAcosA⇒sin2A−1−cos2A+2cosA1+sin2A+cos2A−2cosA+2sinA−2sinAcosA
Now let us consider the formula,
sin2A+cos2A=1sin2A−1=−cos2A
Using it we can write the above equation as,
⇒−cos2A−cos2A+2cosA1+1−2cosA+2sinA−2sinAcosA⇒−2cos2A+2cosA2−2cosA+2sinA−2sinAcosA
Now we can take terms common in them and factorize them as,