Question
Question: Prove that \[\dfrac{{\tan ({{45}^ \circ } + A) - \tan ({{45}^ \circ } - A)}}{{\tan ({{45}^ \circ } +...
Prove that tan(45∘+A)+tan(45∘−A)tan(45∘+A)−tan(45∘−A)=sin2A.
Solution
The question requires the application of trigonometric identities for 45∘angle. Trigonometric identities are equations that connect various trigonometric functions and hold for any value of the variable in the domain. An identity is a mathematical expression that holds true for all values of the variable(s) it contains.
Complete step-by-step answer:
In the given question, we have to use the following trigonometric identity:
tan(x+y)=1−tanxtanytanx+tany and
tan(x−y)=1+tanxtanytanx−tany
Here we know that x=45∘and y=A
Now substituting the value in the above formula, we get,
tan(45∘+A)=1−tan45∘tanAtan45∘+tanA
tan(45∘−A)=1+tan45∘tanAtan45∘−tanA
Using trigonometric ratio table, we get tan45∘=1, and comparing with above formula, we get,
tan(45∘+A)=(1−tanA)(1+tanA)
tan(45∘−A)=(1+tanA)(1−tanA)
Substituting these values in left-hand side of the equation, we get,
=(1−tanA)(1+tanA)+(1+tanA)(1−tanA)(1−tanA)(1+tanA)−(1+tanA)(1−tanA)
Cross-multiplying the denominators, we get,
=(1−tanA)(1+tanA)2+(1−tanA)2(1−tanA)(1+tanA)2−(1−tanA)2
Dividing by (1−tanA), we get,
=(1+tanA)2+(1−tanA)2(1+tanA)2−(1−tanA)2
Now solving the brackets by factoring using following equation:
(a+b)2=a2+2ab+b2and
(a−b)2=a2−2ab+b2
Comparing with the above formula, we get,
=(1+2tanA+tan2A)+(1−2tanA+tan2A)(1+2tanA+tan2A)−(1−2tanA+tan2A)
Opening the brackets, we get,
=1+2tanA+tan2A+1−2tanA+tan2A1+2tanA+tan2A−1+2tanA−tan2A
Adding and subtracting the variables, we get,
=2+2tan2A4tanA
Dividing by 2, we get,
=1+tan2A2tanA
Now we will use the following trigonometric identities to solve the question:
tanθ=cosθsinθ and
1+tan2θ=sec2θand
sec2θ=cos2θ1
Comparing with above formula and substituting the value, we get,
=sec2A2cosAsinA
=cos2A12cosAsinA
=2cosAsinA×cos2A
=2sinA×cosA
Now according to formula:
2sinθcosθ=sin2θ
Comparing with above formula, we get,
=sin2A
Hence LHS=RHS. Therefore, it is proved as per above solution that
tan(45∘+A)+tan(45∘−A)tan(45∘+A)−tan(45∘−A)=sin2A
Note: Meaning of tangent and sine is given below for better understanding:
Tangent: The ratio of side opposite to given angle and its adjacent side is called tangent. It is denoted as tanθ.
tanθ=Adjacent sidetogivenangleOpposite sidetogivenangle
Sine: The ratio of side opposite to given angle and hypotenuse is called sine. It is denoted as sinθ.
sinθ=HypotenuseOpposite sidetogivenangle