Solveeit Logo

Question

Question: Prove that \[\dfrac{{\tan ({{45}^ \circ } + A) - \tan ({{45}^ \circ } - A)}}{{\tan ({{45}^ \circ } +...

Prove that tan(45+A)tan(45A)tan(45+A)+tan(45A)=sin2A\dfrac{{\tan ({{45}^ \circ } + A) - \tan ({{45}^ \circ } - A)}}{{\tan ({{45}^ \circ } + A) + \tan ({{45}^ \circ } - A)}} = \sin 2A.

Explanation

Solution

The question requires the application of trigonometric identities for 45{45^ \circ }angle. Trigonometric identities are equations that connect various trigonometric functions and hold for any value of the variable in the domain. An identity is a mathematical expression that holds true for all values of the variable(s) it contains.

Complete step-by-step answer:
In the given question, we have to use the following trigonometric identity:
tan(x+y)=tanx+tany1tanxtany\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}} and
tan(xy)=tanxtany1+tanxtany\tan (x - y) = \dfrac{{\tan x - \tan y}}{{1 + \tan x\tan y}}
Here we know that x=45x = {45^ \circ }and y=Ay = A
Now substituting the value in the above formula, we get,
tan(45+A)=tan45+tanA1tan45tanA\tan ({45^ \circ } + A) = \dfrac{{\tan {{45}^ \circ } + \tan A}}{{1 - \tan {{45}^ \circ }\tan A}}
tan(45A)=tan45tanA1+tan45tanA\tan ({45^ \circ } - A) = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}
Using trigonometric ratio table, we get tan45=1\tan {45^ \circ } = 1, and comparing with above formula, we get,
tan(45+A)=(1+tanA)(1tanA)\tan ({45^ \circ } + A) = \dfrac{{(1 + \tan A)}}{{(1 - \tan A)}}
tan(45A)=(1tanA)(1+tanA)\tan ({45^ \circ } - A) = \dfrac{{(1 - \tan A)}}{{(1 + \tan A)}}
Substituting these values in left-hand side of the equation, we get,
=(1+tanA)(1tanA)(1tanA)(1+tanA)(1+tanA)(1tanA)+(1tanA)(1+tanA)= \dfrac{{\dfrac{{(1 + \tan A)}}{{(1 - \tan A)}} - \dfrac{{(1 - \tan A)}}{{(1 + \tan A)}}}}{{\dfrac{{(1 + \tan A)}}{{(1 - \tan A)}} + \dfrac{{(1 - \tan A)}}{{(1 + \tan A)}}}}
Cross-multiplying the denominators, we get,
=(1+tanA)2(1tanA)2(1tanA)(1+tanA)2+(1tanA)2(1tanA)= \dfrac{{\dfrac{{{{(1 + \tan A)}^2} - {{(1 - \tan A)}^2}}}{{(1 - \tan A)}}}}{{\dfrac{{{{(1 + \tan A)}^2} + {{(1 - \tan A)}^2}}}{{(1 - \tan A)}}}}
Dividing by (1tanA)(1 - \tan A), we get,
=(1+tanA)2(1tanA)2(1+tanA)2+(1tanA)2= \dfrac{{{{(1 + \tan A)}^2} - {{(1 - \tan A)}^2}}}{{{{(1 + \tan A)}^2} + {{(1 - \tan A)}^2}}}
Now solving the brackets by factoring using following equation:
(a+b)2=a2+2ab+b2{(a + b)^2} = {a^2} + 2ab + {b^2}and
(ab)2=a22ab+b2{(a - b)^2} = {a^2} - 2ab + {b^2}
Comparing with the above formula, we get,
=(1+2tanA+tan2A)(12tanA+tan2A)(1+2tanA+tan2A)+(12tanA+tan2A)= \dfrac{{(1 + 2\tan A + {{\tan }^2}A) - (1 - 2\tan A + {{\tan }^2}A)}}{{(1 + 2\tan A + {{\tan }^2}A) + (1 - 2\tan A + {{\tan }^2}A)}}
Opening the brackets, we get,
=1+2tanA+tan2A1+2tanAtan2A1+2tanA+tan2A+12tanA+tan2A= \dfrac{{1 + 2\tan A + {{\tan }^2}A - 1 + 2\tan A - {{\tan }^2}A}}{{1 + 2\tan A + {{\tan }^2}A + 1 - 2\tan A + {{\tan }^2}A}}
Adding and subtracting the variables, we get,
=4tanA2+2tan2A= \dfrac{{4\tan A}}{{2 + 2{{\tan }^2}A}}
Dividing by 22, we get,
=2tanA1+tan2A= \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}
Now we will use the following trigonometric identities to solve the question:
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and
1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta and
sec2θ=1cos2θ{\sec ^2}\theta = \dfrac{1}{{{{\cos }^2}\theta }}

Comparing with above formula and substituting the value, we get,
=2sinAcosAsec2A= \dfrac{{2\dfrac{{\sin A}}{{\cos A}}}}{{{{\sec }^2}A}}
=2sinAcosA1cos2A= \dfrac{{2\dfrac{{\sin A}}{{\cos A}}}}{{\dfrac{1}{{{{\cos }^2}A}}}}
=2sinAcosA×cos2A= 2\dfrac{{\sin A}}{{\cos A}} \times {\cos ^2}A
=2sinA×cosA= 2\sin A \times \cos A
Now according to formula:
2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta

Comparing with above formula, we get,
=sin2A= \sin 2A
Hence LHS=RHS. Therefore, it is proved as per above solution that
tan(45+A)tan(45A)tan(45+A)+tan(45A)=sin2A\dfrac{{tan({{45}^ \circ } + A) - tan({{45}^ \circ } - A)}}{{tan({{45}^ \circ } + A) + tan({{45}^ \circ } - A)}} = \sin 2A

Note: Meaning of tangent and sine is given below for better understanding:
Tangent: The ratio of side opposite to given angle and its adjacent side is called tangent. It is denoted as tanθ\tan \theta .
tanθ=Opposite sidetogivenangleAdjacent sidetogivenangle\tan \theta = \dfrac{{Opposite{\text{ }}side\,to\,given\,angle}}{{{\rm A}djacent{\text{ }}side\,to\,given\,angle}}
Sine: The ratio of side opposite to given angle and hypotenuse is called sine. It is denoted as sinθ\sin \theta .
sinθ=Opposite sidetogivenangleHypotenuse\sin \theta = \dfrac{{Opposite{\text{ }}side\,to\,given\,angle}}{{Hypotenuse}}